Unconstrained optimziation: Local minimum

  • Thread starter Thread starter kingwinner
  • Start date Start date
  • Tags Tags
    Local Minimum
kingwinner
Messages
1,266
Reaction score
0

Homework Statement


Theorem:
Let f: M->R
where M is a open subset of Rn
Suppose f is C2(M)
Let x E M such that
"gradient of f at x" = 0 and the Hessian of f at x is positive definite
Then x is a strict local minimum point of f.
The above theorem is given in my textbook.

If instead we have "gradient of f at x" = 0 and the Hessian of f at x is positive SEMI-definite, can we conclue that x is a local minimum point of f? Why or why not?
This puzzles me and I can't find this in the textbook.

Homework Equations


Unconstrained optimziation

The Attempt at a Solution


N/A

Any help is appreciated!
 
Physics news on Phys.org
kingwinner said:

Homework Statement


Theorem:
Let f: M->R
where M is a open subset of Rn
Suppose f is C2(M)
Let x E M such that
"gradient of f at x" = 0 and the Hessian of f at x is positive definite
Then x is a strict local minimum point of f.
The above theorem is given in my textbook.

If instead we have "gradient of f at x" = 0 and the Hessian of f at x is positive SEMI-definite, can we conclue that x is a local minimum point of f? Why or why not?
This puzzles me and I can't find this in the textbook.

Homework Equations


Unconstrained optimziation

The Attempt at a Solution


N/A

Any help is appreciated!

Look at the function f(x,y) = (y - x^2)*(y - 2x^2) near (0,0). We have that (0,0) is a stationary point and the Hessian of f at (0,0) is positive semi-definite. However, (0,0) is neither a local max nor min. To see this, note that for y > 2x^2, y is above both parabolas y = x^2 and y = 2x^2, so both factors of f are > 0 and f > 0. For y < x^2, y is below both parabolas, so each factor of f is < 0 but f > 0. However, for x^2 < y < 2x^2, y is between the two parabolas, so one factor of f is > 0 and the other factor is < 0, giving f < 0. Therefore, in any neighbourhood of (0,0) there are points (x,y) where f(x,y) > f(0,0) = 0, and other points (x,y) where f(x,y) < f(0,0).

In general, having a positive semi-definite Hessian is a second-order NECESSARY condition for a minimum, but the sufficient condition for a (strict, local) minimum is stronger. Actually, this is even true in one dimension; just look at the two functions f1(x) = x^2 and f2(x) = x^3 at x = 0. In this case, the analog of positive-semidefinite is ">=0", while the analog of positive-definite is ">0".

RGV
 
Last edited:
I see.

I have a few more related questions...

1) Does positive definite always imply postive semi-definite?

2) For a one-variable function f:R->R, is the Hessian being positive definite at x exactly equivalent to saying that f ''(x)>0?

Thanks for answering!
 
Yes to both.

RGV
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top