A Understand Convolution, Singularity, Kernel, etc: Math Reading Guide

AI Thread Summary
Understanding convolution, singularities, and kernels requires a solid foundation in calculus and advanced mathematical concepts. The discussion emphasizes the importance of context, particularly related to vortex theory, when exploring these terms. Recommended resources include the book by Hewitt and Stromberg, although it may be challenging due to its focus on measure theory. Additionally, gaining knowledge in differential geometry and differential equations is suggested for a deeper comprehension of vortex theory. Searching for online lecture notes from universities is advised as a practical way to access relevant information efficiently.
vktsn0303
Messages
30
Reaction score
0
I'm reading a book on vortex methods and I came across the above mentioned terms, however, I don't understand what they mean in mathematical terms. The book seems to be quite valuable with its content and therefore I would like to understand what the author is trying to say using the above mentioned terms in his mathematics. Can someone please tell me what branch of mathematics or what book of mathematics I should read in order to understand these terms? If it helps, I would like to point out that I have a decent understanding of college level calculus.

Thanks in advance!
 
Mathematics news on Phys.org
This is a rather broad question and depends very likely on the context of vortex theory, as I assume you don't want to hear a standard answer on what a singularity is. Could you narrow it down by some context, examples or further explanations? Otherwise it's almost impossible to answer without complaints about what is meant where and by whom.
 
fresh_42 said:
This is a rather broad question and depends very likely on the context of vortex theory, as I assume you don't want to hear a standard answer on what a singularity is. Could you narrow it down by some context, examples or further explanations? Otherwise it's almost impossible to answer without complaints about what is meant where and by whom.
Yes, I agree it's a rather broad question. Sorry about that.
I would actually like to learn about singularities in a strict mathematical sense. So, if I have to learn about convolution, singularity and kernels in particular where should I start looking?

I did google about them a bit, found some information in wikipedia. But I think it would be much better if I knew the basics of whatever it is I have to know to understand convolution, singularity and kernel. That way I would be able to understand the context of application of these concepts.
 
Well, all these belong to calculus in a way. E.g. I've found all terms in the book from Hewitt and Stromberg
https://www.amazon.com/dp/0387901388/?tag=pfamazon01-20
but this isn't quite easy to read as it is mainly based on measure theory, whereas usual college courses proceed along the lines real analysis - vector analysis - complex analysis and maybe followed by function theory and functional analysis. In addition to understand vortex theory, even some basics on differential geometry and differential equations might be needed. So in order to deal with vortex theory in special, it might be more promising to look out for individual papers, that deal with certain questions. Google often leads to lecture notes on certain topics, that can be read in a reasonable amount of time. Many universities provide such notes on the internet. But as a tip: it's better to search via Google rather than on the universities' homepages, as you normally cannot get through to the individual papers by starting on their homepages.
 
fresh_42 said:
Well, all these belong to calculus in a way. E.g. I've found all terms in the book from Hewitt and Stromberg
https://www.amazon.com/dp/0387901388/?tag=pfamazon01-20
but this isn't quite easy to read as it is mainly based on measure theory, whereas usual college courses proceed along the lines real analysis - vector analysis - complex analysis and maybe followed by function theory and functional analysis. In addition to understand vortex theory, even some basics on differential geometry and differential equations might be needed. So in order to deal with vortex theory in special, it might be more promising to look out for individual papers, that deal with certain questions. Google often leads to lecture notes on certain topics, that can be read in a reasonable amount of time. Many universities provide such notes on the internet. But as a tip: it's better to search via Google rather than on the universities' homepages, as you normally cannot get through to the individual papers by starting on their homepages.
Thanks a lot for the information, fresh_42. I'll try to look up lecture notes that are made available online. I think that's the easier way to learn too.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Back
Top