First of all, there is no end-all analogy for the quantum world. As soon as you understood the first watered down analogy I gave and found the flaw in it, you'd be right back at the doorstep looking for the next one. And so on, and so on, until sooner or later my analogy would be 'electrons act like electrons because electrons act like electrons.' And you would say, "What a douchebag, he just wasted all this time to say nothing." There is no way to completely discuss the quantum world using English, if there was, there would be no Physicists, only English majors (and what a sad world that would be.) That being said, here we go.
We don't think of electrons orbiting the nucleus anymore. Electrons exist in orbitals, probability clouds, around the nucleus. The word orbital means 'similar to an orbit.' It's not an orbit, it will never be an orbit, and no matter how closely you look at it or hard you think about it: it's not an orbit. We observe electrons in the orbitals using statistical methods so we wouldn't know when and where they collide or if they collide at all. The question 'do electrons in the same orbital collide?' is nonsensical. There is no classical interpretation of the quantum mechanical model of atomic electrons. The QM model is the only tool we have to understand atomic physics, so why would it matter if they collided in the first place?