I Understand Wigner-Eckart Theorem & Dimensionality of Vectors

  • I
  • Thread starter Thread starter Silviu
  • Start date Start date
  • Tags Tags
    Theorem
Silviu
Messages
612
Reaction score
11
Hello! I am a bit confused about the dimensionality of the vectors in Wigner-Eckart theorem. Here it is how it gets presented in my book. Given a vector space V and a symmetry group on it G, with the representation U(G) we have the irreducible tensors $${O_i^\mu,i=1,...,n_\mu}$$ (where ##n_\mu## is the dimension of the ##D^\mu## irreducible representation (irrep) of G) having the property that $$U(g)O_i^\mu U(g)^{-1}=O_i^\mu D^\mu(g)^j_i$$ for all ##g\in G##. Now for a set of irreducible tensors ##O_i^\mu## and a set of orthonormal vectors ##e_j^\nu##, vectors which span an invariant subspace of V, we have: $$O_i^\mu |e_j^\nu>=O_k^\mu |e_l^\nu>D^\mu(g)^k_i D^\nu(g)^l_j$$ which shows that the vectors ##O_i^\mu |e_j^\nu>## transform under the direct product representation ##D^{\mu \times \nu}##. Then using Clebsch-Gordan coefficients, we can diagonalize ##D^{\mu \times \nu}## and implicitly decompose the vector space it acts on into invariant subspaces. Thus we get: $$O_i^\mu |e_j^\nu>=\sum_{\alpha,\lambda,l}|w^\lambda_{\alpha l}><\alpha,\lambda,l(\mu \nu)i,j>$$ where ##<\alpha,\lambda,l(\mu \nu)i,j>## are the CG coefficients and ##|w^\lambda_{\alpha l}>## are the basis vectors corresponding to the irrep ##D^{\lambda}## in the decomposition of ##D^{\mu \times \nu}##. Lastly, to get the Wigner-Eckart theorem they calculate this product: $$<e^l_\lambda|O_i^\mu |e_j^\nu>$$ and here it is where I get confused. The vector (actually I think it becomes a one form, but anyway) ##<e^l_\lambda|## is in the vector space V (it has lot's of zeros as it is invariant under a certain subspaces, but still in V). However ##O_i^\mu |e_j^\nu>## is in the vector space associated with ##D^{\mu \times \nu}##. Now the first one would have the dimension the same as V while the second one will have a dimension ##n_\mu \times n_\nu## which don't have to be equal. How can you take the dot product of 2 vectors with different dimensionalities? What am I missing here? For reference the book I am using is Group Theory in Physics by Wu-Ki Tung and this is presented towards the end of chapter 4. Thank you!
 
Physics news on Phys.org
Anyone? Please!
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top