billschnieder said:
Rs(-30,30) = Rs(-30,0) + Rs(0,30) - 2* Rs((-30,0)&(0, 30)), the equality
Rs((-30,0)&(0, 30)) >= 0 ... (*)
therefore Rs(-30,30) <= Rs(-30,0) + Rs(0,30), your inequality
I agree with that, although I could have derived the inequality without using that equation.
therefore Rs((-30,0)&(0, 30)) = 0.5 * [Rs(-30,0) + Rs(0,30) - Rs(-30,30)] >= 0
Yes, I agree with that.
If Rp=Rs(-30,30)=0.75, Rq=Rs(-30,0)=0.5, and Rr=Rs(0, -30)=0.5 ... (*)
then Rs((-30,0)&(0, 30)) = 0.5 * [0.5 + 0.5 - 0.75] = -0.125 < 0
I think you mean that Rs(-30,0) and Rs(0,30) equal .25, not .5. So it's Rs((-30,0)&(0, 30)) = .5 (.25 + .25 -.75) = -.125
You have two contradictory assumptions (*). If Rs((-30,0)&(0, 30)) >= 0 as you assumed when you derived the inequality, then it must be the case that the three correlations Rp(-30,30), Rq(-30,0), and Rr(0,30) CAN NOT ALL BE EQUAL to the three correlations Rs(-30,30), Rs(-30,0) and Rs(0,30).
Yes, we have reached a contradiction, so at least one of the assumptions used in deriving the contradiction must be wrong. But let me give you a proof that three relative frequencies Rs(-30,0), Rs(0,30), and Rs(-30,30) must have the same value that they have for p, q, and r.
You have already agreed that Rp(-30,0)=Rq(-30,0)=Rr(-30,0), and similarly for (0,30) and (-30,30). Let us denote by Np(-30,0) the number of photon pairs in p for which M(-30,0), let us denote by Np_tot the total number of photon pairs in p, and let us make similar definitions for q, r, and s. Then we know that Np(-30,0)/Np_tot=Nq(-30,0)/Nq_tot=Nr(-30,0)/Nr_tot.
And then Rs(-30,0) = Ns(-30,0)/Ns = (Np(-30,0) + Nq(-30,0) + Nr(-30,0))/(Np_tot + Nq_tot + Nr_tot) = (Rp(-30,0)*Np_tot+Rq(-30,0)*Nq_tot+Rr(-30,0)*Rq_tot)/(Np_tot+Nq_tot+Nr_tot) = (Rp(-30,0)*Np_tot+Rp(-30,0)*Nq_tot+Rp(-30,0)*Rq_tot)/(Np_tot+Nq_tot+Nr_tot) = Rp(-30,0). And then we can use similar reasoning for (0,30) and (-30,30). What do you disagree with here?
In other words, you assumed that p, q, r were not disjoint (presence of Rs((-30,0)&(0, 30)) in the derivation), and then later assumed that they were disjoint --> violation.
How does the presence of Rs((-30,0) & (0,30)) indicate that I'm assuming that p, q, and r are not disjoint? I am definitely assuming that p, q, and r are disjoint.