Mol_Bolom
- 24
- 0
I just want to see if I got this correct. From what all I've read it seems that I have most of it understood, but eh, I don't trust my judgement...
Lets say we have f(x) = {{3x^3 + 8x^2 + 7x + 12} \over {4x^2 - 12x - 15}}
And the derivative...
<br /> {d \over dx} f(x) = \lim _{h \rightarrow 0} {{f(x+h) - f(x)} \over h} =<br /> {{<br /> {d \over dx} (3x^3 + 8x^2 + 7x + 12)<br /> }<br /> \over<br /> {<br /> {d \over dx} (4x^2 - 12x - 15)<br /> }} = f'(x)<br />
Thus the integral would be...
<br /> \int {f'(x)} \textbf{ }dx = f(x)<br />
And if the constants are unknown, thus letting a and b represent the constants...
<br /> \int {f'(x)} \text{ } dx = {{3x^3 + 8x^2 + 7x + a} \over {4x^2 - 12x + b}}<br />
Lets say we have f(x) = {{3x^3 + 8x^2 + 7x + 12} \over {4x^2 - 12x - 15}}
And the derivative...
<br /> {d \over dx} f(x) = \lim _{h \rightarrow 0} {{f(x+h) - f(x)} \over h} =<br /> {{<br /> {d \over dx} (3x^3 + 8x^2 + 7x + 12)<br /> }<br /> \over<br /> {<br /> {d \over dx} (4x^2 - 12x - 15)<br /> }} = f'(x)<br />
Thus the integral would be...
<br /> \int {f'(x)} \textbf{ }dx = f(x)<br />
And if the constants are unknown, thus letting a and b represent the constants...
<br /> \int {f'(x)} \text{ } dx = {{3x^3 + 8x^2 + 7x + a} \over {4x^2 - 12x + b}}<br />