Understanding Expectation Values in Quantum Mechanics

dudy
Messages
18
Reaction score
0
Let A be an observable (opeator), and we're assuming that for a given state psi(x), the value of A is given by A acting on psi(x), namely - A|psi>.
Also we assume that - P(x) = |psi(x)|^2
So, I'de expect the Expectation value of A to be defined like so:
<A> = Integral[-Inf:+Inf]{ P(x) A psi(x) dx} = Integral[-Inf:+Inf]{ |psi(x)|^2 A psi(x) dx} , which is not <psi|A|psi>, and that's clearly not right. where did i go wrong here?
 
Physics news on Phys.org
dudy said:
Let A be an observable (opeator), and we're assuming that for a given state psi(x), the value of A is given by A acting on psi(x), namely - A|psi>.

No. A|\psi\rangle is not a value. It's another state, in general.

If |\psi\rangle happens to be an eigenstate of the operator A, then A|\psi\rangle = a|\psi\rangle, where a is an eigenvalue of the operator A.
 
got it, thank you!
 
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Is it possible, and fruitful, to use certain conceptual and technical tools from effective field theory (coarse-graining/integrating-out, power-counting, matching, RG) to think about the relationship between the fundamental (quantum) and the emergent (classical), both to account for the quasi-autonomy of the classical level and to quantify residual quantum corrections? By “emergent,” I mean the following: after integrating out fast/irrelevant quantum degrees of freedom (high-energy modes...
Back
Top