you have to know what space you want to take the product in. there are two dual concepts. for any vector space M, you can define another vector space M^M, and a product from MxM-->M^M, or MtensorM-->M^M, if you like, simply formally, by sending v,w to the symbol v^w, subject to the rules that v^w = -w^v or equivaklently, that v^v = 0. thus vtensw and vtensw + vtensv go to the same element namely v^w. This is what wikimnopedia is trying to say. It generalizes by saying that v^v^w = 0, and v^v^w^r = 0, etc...
This map MxM-->M^M is bilinear and alternating by construction. Thus composing it, i.el following it, by a linear function M^M-->R, where R is the real numbers, gives a bilinear alternating function on MxM.
Thus to avoid defining M^M, some authiors instead focus on its dual space, namely linear functions on M^M, which can be described more easily as bilinear alternating functions (or tensors) on MxM. This is the version Quasar is talking about.
However, one still needs to define the multiplication map,
(M^M)^M-->M^M^M, which in the first or formal case is easy, just write down the symbols and juxtapoose them.
In Quasars case however, one must define a way to combine two alternating functions into an alternating function. The big secret is there is onloy one way to do this, namely the determinant. that's all an alternating or exterior product is, a determinant.
namely, if you want the tensor product of the basic coordinate functions x and y on R^2, you just multiply them and get xy. Buy if you want an alternatinbg product of x and y you take their determinant xy-yx, i.e. the alternating sum of their products in all possible orders.
More generally, if f,g are any two linear functions on M, their exterior product in (M^M)* is fg-gf. the product of f,g,h in (M^M^M)* is fgh-gfh+-...you get it.
I.e. if you know what a determinant is, you have seen all the alternating or exterior products in the world. (There are also some normalization factors stuck in front of these products to make them come out = 1 when acting on the standard basis vectors. See Spivak, Calculus on maniofolds.)