Understanding f(y) in a Nonempty Set X of $\mathbb{R}^n$ - Bob19

  • Thread starter Thread starter Bob19
  • Start date Start date
  • Tags Tags
    Set
Bob19
Messages
71
Reaction score
0
Hi

i have this following assignment in Analysis

Given X \subseteq \mathbb{R}^n which is a nonempty subset of \mathbb{R}^n

The set \{ \| | x -y \| | \ | x \in X \} has an infimum such that

f(y) = \{ \| | x -y \| | \ | x \in X \}

where f: \mathbb{R}^n \rightarrow \mathbb{R}^n

I need a hint on howto show that if y \in X then f(y) = 0 ??

Regards,

Bob19
 
Last edited:
Physics news on Phys.org
Fix x in X. What is the shortest distance between x and y if y is allowed to be in X (note that x is in X)?
 
very similar to mathboy20s post in this subforum
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top