Thomas2
- 118
- 0
Aerodynamic Lift vs. Magnus Effect
I think it is important in this context to point out the fundamental difference between the aerodynamic lift and the magnus effect. As indicated in my posts #66 and #70 (page 5), the former should exist also for a strictly non-viscous gas, but using the same argumentation as there, the magnus effect does not.
Consider a rotating ball that is moving through an inviscid gas (i.e. molecules interacting with the ball but not with each other): if the surface of the ball would be mathematically smooth, then the rotation would actually be without any effect at all because the air molecules would just bounce off like for a non-rotating sphere, but even for a realistic rough surface (obviously a surface can not be smoother than about 1 atomic radius), the overall effect still cancels to zero: the pressure on the side rotating against the airstream is higher at the front but smaller at the back (and the other way around for the co-rotating side) so overall there is no resultant force on the ball but merely a torque that slows down the rotation.
Hydrodynamics arguments (i.e. Bernoulli's principle) are therefore required to explain the magnus effect but not for the usual aerodynamic lift.
I think it is important in this context to point out the fundamental difference between the aerodynamic lift and the magnus effect. As indicated in my posts #66 and #70 (page 5), the former should exist also for a strictly non-viscous gas, but using the same argumentation as there, the magnus effect does not.
Consider a rotating ball that is moving through an inviscid gas (i.e. molecules interacting with the ball but not with each other): if the surface of the ball would be mathematically smooth, then the rotation would actually be without any effect at all because the air molecules would just bounce off like for a non-rotating sphere, but even for a realistic rough surface (obviously a surface can not be smoother than about 1 atomic radius), the overall effect still cancels to zero: the pressure on the side rotating against the airstream is higher at the front but smaller at the back (and the other way around for the co-rotating side) so overall there is no resultant force on the ball but merely a torque that slows down the rotation.
Hydrodynamics arguments (i.e. Bernoulli's principle) are therefore required to explain the magnus effect but not for the usual aerodynamic lift.