PBRMEASAP
- 191
- 2
Aha! That is very neat. Does the V^2/R come from the Vx(curl V) term in Euler's equation?
That is EXACTLY one of the main points my texts make about lift generation. You can accuarately model a lift producing body with inviscid flow and circulation:russ_watters said:Circulation was mentioned before, but the main reason it comes into play in the first link is that the Kutta-Joukowski theorem is a simplified model which, among other things, ignores viscosity. Check out the description and depictions of flow around a cylinder in the first link (bottom row of pics, 3rd from right).
By inducing circulation (think: curveball in baseball), you not only create downwash behind the cylinder, but you also create upwash in front of it. The whole flow field around the cylinder is rotating.
It can be said that an airfoil is shaped in a way designed to produce such circulation.
Almost done...I promise."Since viscous effects are of minor importance in the generation of lift, it should be possible to calculate the lift force on an airfoil by integrating the pressure distribution obtained by the equations governing inviscid flow past the airfoil. That is, the potential flow theory discussed should provide a method to determine the lift."
"The predicted flow field past an airfoil with no lift (i.e. a symmetrical airfoil with zero angle of attack) appears to be quite accurate (except for the absence of thin boundary layer regions). However, the calculated flow past the same airfoil at a non-zero angle of attack (but small enough to avoid BL separation) is NOT PROPER AT THE TRAILING EDGE. In addition, the calculated lift for the non-zero angle of attack is zero-in conflict with the known fact that such airfoils produce lift."
"The unrealistic flow situation can be corrected by adding an appropriate clock-wise swirling flow around the airfoil (flow moving left to right). The results are twofold: (1) The unrealistic behavior at the trailing edge is eliminated and (2) the average velocity on the upper surface of the airfoil is increased while that on the lower surface is decreased. From the Bernoulli equation concepts, the average pressure on the on the upper surface is decreased and that on the lower is increased. The net effect is to change the the original zero lift condition to that of a lift-producing airfoil...The amount of circulation needed to have the flow leave the trailing edge smoothly is a function of the airfoil geometry and can be calculated using potential flow (inviscid) theory."
Correct, although I am not sure if "multiply-connected" is the right topological term (that reveals my topological incompetence, I guess..)PBRMEASAP said:In the steady state case, is the non-uniqueness of the solution a result of the flow region being multiply-connected? I guess I'm still trying to think of it in terms of potential flow, which I know I will have to abandon soon when we get to viscosity.
Yeah, that's the way I remember it. Since there is a nonzero circulation around the wing, there must be some point(s) inside the wing where Laplace's equation isn't satisfied. So the domain can't be simply-connected.arildno said:As I've learned it, uniqueness of the solution to the Laplace equation requires that every simple, closed curve contained within the domain is reducible, i.e., basically that they can be "shrunk" to a single point while remaining within the domain.
This is particularly interesting! I had not noticed this. Apparently I am usually too busy watching my knees knock together to notice what's going on with the wings during takeoffarildno said:3. If you make the curvature of the underside negative (same as on the upper side), then this ought to boost the lift:
This insight is actually used in flight:
During the acceleration and take-off phases, many planes lowers extensible downwards flaps at the leading (!) and trailing edges.
While increasing the actual DRAG a lot, it is more crucial to gain the benefit of a high pressure zone beneath the wing during acceleration/take-off.
I have not had time to read all this yet, but it looks interesting. Thanks for posting it. I agree that their explanation of the Coanda effect leaves much to be desired, especially since their premise is that the "popular explanation" isn't physical enough. I'll have to think about it some more.Andrew Mason said:So far, no one has mentioned the Coanda effect as an explanation for wing lift. This is the effect (noticed for the first time, apparently, in 1930 by Romanian aircraft engineer Henri Coanda) of a fluid following the shape of a surface (as in water from a tap passing close to the side of a horizontal cylinder, following the cylinder surface instead of going straight down). See:
http://www.aa.washington.edu/faculty/eberhardt/lift.htm
I am not sure. In a vacuum, assuming that the Coanda effect works in a vacuum, I think it has to touch. But in air, it may simply have to contact the layer of air that is trapped next to the surface.PBRMEASAP said:edit: BTW, are you saying that the Coanda effect is produced even when the water does not actually touch the cylinder, but just passes by it closely?
But I don't think shear forces, either within the water or between the water and the cylinder, are sufficient to create a centripetal force. Or does viscosity also account for cohesive force between fluid elements, as in surface tension? If so, they could have explained that.Because the fluid near the surface has a change in velocity, the fluid flow is bent towards the surface by shear forces.
(why? Bernoulli effect?).When the air is bent around the top of the wing, it pulls on the air above it accelerating that air downward. Otherwise there would be voids in the air above the wing. Air is pulled from above. This pulling causes the pressure to become lower above the wing
Right. I can see how water molecules can pull other moving molecules around a surface when they attach to the surface. But I don't see how air molecules can 'pull' on other air molecules like liquid water can.PBRMEASAP said:I read over the Anderson/Eberhardt explanation of the Coanda effect again, and I think there is something missing. They apparently only talk about shear forces due to viscosity. For example: But I don't think shear forces, either within the water or between the water and the cylinder, are sufficient to create a centripetal force. Or does viscosity also account for cohesive force between fluid elements, as in surface tension? If so, they could have explained that.
arildno said:russ:
I think we agree that separation occurs when the fluid is unable to generate the pressure gradient necessary to provide the fluid with the centripetal acceleration the curvature of the surface demands.
Now, if I read you a bit ungenerously, you seem to imply that the too weak pressure gradient is caused by a too low pressure in the inviscid domain outside the surface.
However, the weak gradient might also ensue if the fluid is unable to reduce the pressure at the surface sufficiently..
Yeah, separation IS difficult (and I'm certainly no expert on it)PBRMEASAP said:----------------
I still get confused reading through all these different explanations though. I have a gut feeling they are all basically saying the same thing, even if they wouldn't readily admit to it. There seem to be some "chicken and egg" paradoxes with the flow separation. In the link on vortex generators, they say that the boudary layer gets pushed away by the adverse pressure on the trailing edge. This is certainly true, but flow would also separate because of good ol' centrifugal force if it weren't for pressure pushing it against the wing. Momentum doesn't really keep the flow moving along the wing, as they seem to imply. So it must really be a delicate balance of adverse pressure free stream pressure, and turbulence that decides whether flow stays attached or doesn't.
------------
Ah! So it is the boudary layer that causes the stagnation point to occur at the trailing edge. And that means that viscosity, although dissipative, actually aids in generating and sustaining lift. Very cool.arildno said:Now, before I proceed further on the inviscid theory, we can see the role of viscosity clearer:
Take a pencil and thicken the actual upper wing somewhat, illustrating a boundary layer which remains firmly attached to the wing.
Whereas the inrush of fluid into the evacuated region through the curved side of the wing's previous position is unaffected by that strip, not so at all with the uprush of fluid through the horizontal segment!
On that fluid piece, there will be a strong resistive force acting upon it from the boundary layer.
In potential flow theory, the sharp trailing edge is sort of a singular point, right? What happens to the velocity there? Is it infinite, zero, or finite? In order to be continuous it seems like it would need to go to zero, but I don't know whether the velocity must be continuous on the wing surface or not. Now that I think about it, it must not necessarily be zero because that would be a stagnation point.arildno said:Now, pay attention to the fluid element directly beneath the HORIZONTAL line segment.
Clearly, this will be accelerated UPWARDS into the evacuated zone, and will, in fact, hug the upper side as it speeds onwards
PBRMEASAP said:Then what makes an airplane fly?
I think that is a very good answer!vanesch said:And now for the stupid answer of the week:
The pilot !![]()
cheers,
Patrick.