arildno
Science Advisor
Homework Helper
Gold Member
Dearly Missed
- 10,119
- 138
Fred Garvin:
We are indeed speaking of the same thing..
However, I prefer to empasize the "adverse" word, in that the pressure further down the surface is too big to allow the streamline defining the boundary layer to follow the actual surface.
The reason I prefer this view is:
Simplify the separated region in letting the "inviscid streamline" pass over a vortex (i.e, constituting the vortex's upper part), with the nether part of the vortex lying at the actual surface.
Thus, there will be a backflow along the surface, which proceeds to whorl up around the vortex center (i.e, turning about 180 degrees around the vortex center).
The "backflow" streamline will lie directly beneath the inviscid streamline once it (i.e, the "backflow" streamline) has turned.
If we sleaze, and say that particles following the backflow streamline experience pure circular motion around the vortex center, then the pressure along the backflow is roughly constant; the pressure gradient formed by that pressure and the pressure in the vortex center providing the particle's centripetal acceleration.
But then it follows that the pressure at the inviscid streamline on the upper side of the vortex must roughly equal the pressure at the surface (since, by continuity of pressure, the pressure in adjacent segments of the inviscid&backflow streamlines must be about equal).
Since the inviscid streamline is a lot less curved than the actual surface, it follows that the pressure at the actual surface is a good deal higher than if the inviscid streamline had been firmly attached to the surface (since the inviscid approximation is good above the inviscid streamline).
This, in my mind, gives a neat illustration of the stalling phenomenon, i.e, the lift collapse experienced in separation.
We are indeed speaking of the same thing..
However, I prefer to empasize the "adverse" word, in that the pressure further down the surface is too big to allow the streamline defining the boundary layer to follow the actual surface.
The reason I prefer this view is:
Simplify the separated region in letting the "inviscid streamline" pass over a vortex (i.e, constituting the vortex's upper part), with the nether part of the vortex lying at the actual surface.
Thus, there will be a backflow along the surface, which proceeds to whorl up around the vortex center (i.e, turning about 180 degrees around the vortex center).
The "backflow" streamline will lie directly beneath the inviscid streamline once it (i.e, the "backflow" streamline) has turned.
If we sleaze, and say that particles following the backflow streamline experience pure circular motion around the vortex center, then the pressure along the backflow is roughly constant; the pressure gradient formed by that pressure and the pressure in the vortex center providing the particle's centripetal acceleration.
But then it follows that the pressure at the inviscid streamline on the upper side of the vortex must roughly equal the pressure at the surface (since, by continuity of pressure, the pressure in adjacent segments of the inviscid&backflow streamlines must be about equal).
Since the inviscid streamline is a lot less curved than the actual surface, it follows that the pressure at the actual surface is a good deal higher than if the inviscid streamline had been firmly attached to the surface (since the inviscid approximation is good above the inviscid streamline).
This, in my mind, gives a neat illustration of the stalling phenomenon, i.e, the lift collapse experienced in separation.
Last edited: