I find it important to do some more Anderson&Eberhardt bashing.
This is a very revealing quote:
So how does a thin wing divert so much air? When the air is bent around the top of the wing, it pulls on the air above it accelerating that air downward. Otherwise there would be voids in the air above the wing. Air is pulled from above. This pulling causes the pressure to become lower above the wing. It is the acceleration of the air above the wing in the downward direction that gives lift. (Why the wing bends the air with enough force to generate lift will be discussed in the next section.)
Clearly, these individuals suffer from a complete misunderstanding of what pressure is.
Since these persons are reputedly employed at Fermi's National Accelerator Laboratory and still suffer from deep misunderstandings, I find it in order to review a few basics on pressure:
Pressure at a "point" is a measure of the typical amount and intensity of molecular collisions at that "point"
The "point" must be understood to be a tiny spatial region which is, however, so large that to speak of averaged quantities within that region (typical examples: velocity, temperature, density, pressure) is useful.
If the region is too small, the merest random drift of molecules into that region would provide wild oscillations in these averages over time; that is, these averaged quantities would essentially lose their usefulness.
As long as our region is big enough to contain gazillions of molecules, statistical arguments leads us to expect that such wild fluctuations in measured quantities die out.
The region is incredibly tiny still, if I remember correctly, the typical linear dimension of such an "element region" for a not-so dilute gas is about 10^{-7}m
(For liquids, like water, I think you can squeeze the linear dimension down at least a couple of orders of magnitude).
Now, the pressure is given as a scalar, and the pressure force onto a surface at our "point" is in the "colliding" direction, i.e, directed along the inwards normal of the surface.
Furthermore, and this is very important:
Since our "point" really contains gazillions of molecules, there should within it be NO PREFERRED DIRECTIONS for the momentum transfers involved in the collisions.
That is, the pressure force at "point" is equally strong in any direction.
Mathematically, this means that the pressure at a point is not a function of the direction of the contact surface normal.
Let us now consider a plate which is originally in contact&rest with a fluid (on one side of the plate, for simplicity). We keep the fluid inviscid, so that the "pure" pressure dynamics comes clearer into focus.
Now, give the plate a jump velocity V directed away from the fluid (it so happens that the argument is easier to visualize in this manner, it is, of course, equally valid when speaking of a finite acceleration and its effect over time).
Now, the pressure force on the plate at a given instant is evidently the accumulated effect of gazillions of molecules striking it at that moment.
The molecules have a random velocity distribution; this also holds for that subset of molecules who happen to have a "colliding" velocity, i.e, those which are actually going to hit the plate.
Let us see what happens in the jump velocity case (with some time gone..):
Can we really say that suddenly there has appeared a tiny strip of complete vacuum between the plate and the fluid?
Not really.
Consider that subset of particles close to the plate which initially had a "colliding" velocity (a lot) bigger than "V". Clearly, these must be regarded to still strike the plate, but instead of say with their original striking velocity V_{0} they do so with a new striking velocity V_{0}-V
Thus, the only molecules which can be said to have been removed from the plate (relative to the case where the plate where at rest) are those whose original collision velocities satisfied the inequality 0<V_{0}<V
Thus, unless V is very large, we cannot really expect a measurable density reduction at the plate.
Since, therefore, in the new position there are still gazillions of molecules who have "followed" the plate, we have in reality established the boundary condition for the macroscopic velocity field, i.e, that at all times, the normal velocity of the fluid equals the normal velocity of the plate.
The only dynamical feature we have gained, is a (significant) pressure DROP at the plate, which clearly follows from the argument above.
(Since the total kinetic energy of a striking molecule ought to be the same as a non-striking one, it follows that the striking molecules have a correspondingly less "tangential" velocity to start with, i.e, the actual amount of momentum transfers in local collisions remains non-directional)
Alternatively, we may say that we will get that pressure drop which is sufficient to accelerate the fluid so that the boundary condition of equal normal velocities is fulfilled..
Thus, there is absolutely no mystery involved in why a fluid tends to remain in contact with a surface, which Eberhardt&Anderson seems to think.
In particular, we don't need to pose the existence of some ghostly hand reaching up from the surface to grab air molecules.
An inviscid fluid is equally capable to fill out voids as a viscous fluid is; the pertinent feature is how either fluid goes about doing just that..
As we have seen, a viscous fluid prefers downrush about the wing, the inviscid fluid is not so picky.