Why Does Kinetic Friction Apply When a Box Starts Sliding Down an Incline?

Click For Summary
SUMMARY

The discussion centers on the physics of a 2.5 kg box on a 53-degree incline, analyzing the application of kinetic and static friction. The initial calculation incorrectly used static friction (μ-static = 0.5) to determine acceleration, yielding 4.87 m/s². However, the correct approach involves kinetic friction (μ-kinetic = 0.25), resulting in an acceleration of 6.35 m/s². The key takeaway is that once the box begins to slide, kinetic friction must be applied, as static friction only applies when the object is at rest.

PREREQUISITES
  • Understanding of Newton's second law (F = ma)
  • Knowledge of friction coefficients (μ-static and μ-kinetic)
  • Basic trigonometry for resolving forces on an incline
  • Familiarity with the concept of acceleration due to gravity (g)
NEXT STEPS
  • Study the differences between static and kinetic friction in detail
  • Learn how to resolve forces on inclined planes using trigonometric functions
  • Explore real-world applications of friction in physics problems
  • Investigate the effects of varying incline angles on acceleration
USEFUL FOR

Students studying physics, particularly those focusing on mechanics, as well as educators seeking to clarify concepts of friction and motion on inclined planes.

fishingspree2
Messages
138
Reaction score
0

Homework Statement


A 2.5 kg box in on a 53 degrees inclined plane. mu-kinetic = 0.25 and mu-static=0.5. Find it's acceleration if it is initially standing still.


Homework Equations


F = ma


The Attempt at a Solution


The X component of the gravity is = 2.5*g*sin(53)
Normal force = 2.5*g*cos(53)
Maximum static force = mu-static*N = 0.5*2.5*g*cos(53)
To my understanding, since it is not moving, I will use mu-static because once the force becomes greater than maxmum static force by an infinitely small number, it is accelerating close to the accelerating value found using maximum static force.
http://img252.imageshack.us/img252/8263/frictionto4.jpg

F = ma
[2.5*g*sin(53)] - [0.5*2.5*g*cos(53)] = 2.5*a
g [sin(53) - 0.5*cos(53)] = a
a= 4.87 m/s^2

however, by looking in the answer booklet, this is in correct, and the acceleration is found by using mu-kinetic
g [sin(53) - 0.25*cos(53)] = a
a= 6.35 m/s^2

it really makes more sense in my head using mu-static instead of mu-kinetic
can somebody show me why it is wrong?
 
Last edited by a moderator:
Physics news on Phys.org
If the box is accelerating from an initially at rest position, then it must be moving. You can't use static friction forces for objects in motion. The box is initially standing still either because you are holding it there, or because it has come to a momentary stop after someone shoved it up the incline.
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
Replies
46
Views
6K
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 11 ·
Replies
11
Views
1K
Replies
19
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
6
Views
2K
Replies
8
Views
3K
  • · Replies 28 ·
Replies
28
Views
6K