Understanding Flux and Gauss's Law in Electric Fields

  • Context: Undergrad 
  • Thread starter Thread starter 123yt
  • Start date Start date
  • Tags Tags
    Concept Law
Click For Summary
SUMMARY

This discussion clarifies the relationship between electric fields, flux, and Gauss's Law. Flux is defined as the quantity of electric field lines passing through a surface. According to Gauss's Law, the net flux through a Gaussian surface is zero only if there is no charge enclosed within that surface. Therefore, if a uniform electric field exists and the Gaussian surface does not contain the charge, the net flux will indeed be zero.

PREREQUISITES
  • Understanding of electric fields
  • Familiarity with the concept of flux
  • Knowledge of Gauss's Law
  • Basic principles of electrostatics
NEXT STEPS
  • Study the mathematical formulation of Gauss's Law
  • Explore examples of Gaussian surfaces in electrostatics
  • Learn about electric field lines and their properties
  • Investigate applications of Gauss's Law in calculating electric fields
USEFUL FOR

Students of physics, educators teaching electromagnetism, and anyone seeking to deepen their understanding of electric fields and Gauss's Law.

123yt
Messages
30
Reaction score
0
I'm currently trying to understand the concepts behind electric fields, flux, and Gauss's Law, so I'd appreciate it if someone could clear some things up for me.

Flux is the amount of field lines that pass through a surface, so if there's a uniform electric field, will the net flux through any object will be 0?
 
Physics news on Phys.org
123yt said:
I'm currently trying to understand the concepts behind electric fields, flux, and Gauss's Law, so I'd appreciate it if someone could clear some things up for me.

Flux is the amount of field lines that pass through a surface, so if there's a uniform electric field, will the net flux through any object will be 0?

Almost! If I'm not mistaken, Gauss's Law tells us that the flux through a Gaussian surface will only equal zero if there is no charge located within the surface. So, so long as your surface does not contain the charge creating the uniform field, then your current assumptions lay correct.
 
Thanks for the help.
 

Similar threads

  • · Replies 83 ·
3
Replies
83
Views
5K
  • · Replies 30 ·
2
Replies
30
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 7 ·
Replies
7
Views
891
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 25 ·
Replies
25
Views
3K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 5 ·
Replies
5
Views
802
  • · Replies 8 ·
Replies
8
Views
2K