Understanding Mathematical Structures

Jimmy84
Messages
190
Reaction score
0
I have been studying topology and abstract algebra for some years, and for a lot of time I have been having a hard time trying to understand the definition and concept of "preservation of mathematical structures".

For instance for binary operators a Homomorphism is said to preserve mathematical structure of this kind, but for regular functions in set theory an isomorphism is used instead, and for topological spaces an homeomorphism is used.

Is there any book, mathematical subject or any resource that could help me understand why these definitions are given and not others and why they work in order to preserve mathematical structures, could other alternative definitions work as well?

Does model theory or category theory help to give further insight to understand this?

Thanks a lot
 
Mathematics news on Phys.org
Isomorphism means homomorphism for function and its inverse. These terms are for algebraic structures (no topology needed).
Homeomorphism refers to topological structures (no algebra needed).
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
25
Views
4K
Replies
12
Views
2K
Replies
5
Views
2K
Replies
6
Views
1K
Replies
1
Views
2K
Replies
26
Views
8K
Replies
38
Views
4K
Back
Top