MHB Understanding Normed Linear Spaces: Convergence in C[0,1]

  • Thread starter Thread starter bugatti79
  • Start date Start date
  • Tags Tags
    Convergence Linear
bugatti79
Messages
786
Reaction score
4
Folks,

I am looking at this task.

1) What does it mean to say a sequence converges in a normed linear space?

2) Show that if a sequence fn converges to f in C[0,1] with sup norm then it also converges with the integral norm?

Any idea on how I tackle these?

thanks
 
Physics news on Phys.org
bugatti79 said:
1) What does it mean to say a sequence converges in a normed linear space?

2) Show that if a sequence fn converges to f in C[0,1] with sup norm then it also converges with the integral norm?
Do you know about sequence convergence in an ordinary metric space, say the real and/or complex numbers?
If so, then you have the same idea using the norm. After all, is that not how absolute value works?
 
Plato said:
Do you know about sequence convergence in an ordinary metric space, say the real and/or complex numbers?
If so, then you have the same idea using the norm. After all, is that not how absolute value works?

Is it something along the line of

given $\epsilon > 0 $ there exist $ n_0 \in N$ s.t $|(fn-f) (x)|| < \epsilon $ for $n > n_0$ and $ x \in [a,b] $

ie $\forall \epsilon > 0$ there exist $n_0 \in N$ s.t $sup |(f_n-f)(x)|=sup|f_n(x)-f(x)|$ and $x \in [a,b]$ for both...
 
I posted this question on math-stackexchange but apparently I asked something stupid and I was downvoted. I still don't have an answer to my question so I hope someone in here can help me or at least explain me why I am asking something stupid. I started studying Complex Analysis and came upon the following theorem which is a direct consequence of the Cauchy-Goursat theorem: Let ##f:D\to\mathbb{C}## be an anlytic function over a simply connected region ##D##. If ##a## and ##z## are part of...
Back
Top