MHB Understanding Normed Linear Spaces: Convergence in C[0,1]

  • Thread starter Thread starter bugatti79
  • Start date Start date
  • Tags Tags
    Convergence Linear
bugatti79
Messages
786
Reaction score
4
Folks,

I am looking at this task.

1) What does it mean to say a sequence converges in a normed linear space?

2) Show that if a sequence fn converges to f in C[0,1] with sup norm then it also converges with the integral norm?

Any idea on how I tackle these?

thanks
 
Physics news on Phys.org
bugatti79 said:
1) What does it mean to say a sequence converges in a normed linear space?

2) Show that if a sequence fn converges to f in C[0,1] with sup norm then it also converges with the integral norm?
Do you know about sequence convergence in an ordinary metric space, say the real and/or complex numbers?
If so, then you have the same idea using the norm. After all, is that not how absolute value works?
 
Plato said:
Do you know about sequence convergence in an ordinary metric space, say the real and/or complex numbers?
If so, then you have the same idea using the norm. After all, is that not how absolute value works?

Is it something along the line of

given $\epsilon > 0 $ there exist $ n_0 \in N$ s.t $|(fn-f) (x)|| < \epsilon $ for $n > n_0$ and $ x \in [a,b] $

ie $\forall \epsilon > 0$ there exist $n_0 \in N$ s.t $sup |(f_n-f)(x)|=sup|f_n(x)-f(x)|$ and $x \in [a,b]$ for both...
 
We all know the definition of n-dimensional topological manifold uses open sets and homeomorphisms onto the image as open set in ##\mathbb R^n##. It should be possible to reformulate the definition of n-dimensional topological manifold using closed sets on the manifold's topology and on ##\mathbb R^n## ? I'm positive for this. Perhaps the definition of smooth manifold would be problematic, though.

Similar threads

Replies
4
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 21 ·
Replies
21
Views
3K
  • · Replies 18 ·
Replies
18
Views
7K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
2
Views
1K
  • · Replies 13 ·
Replies
13
Views
4K
Replies
1
Views
1K