Understanding Periods of Trigonometric Functions with Different Frequencies

asatru jesus
Messages
3
Reaction score
0
f(x)= sin 3x - (1/2)sin x, find the period.

i know the period for sin 3x is 2pi/3 and the period of sin x is 2pi but how do you subtract these? I totally forget how to do this! I mean i could find the answer with any graphing program but i want to know how to do this type of problem.
 
Mathematics news on Phys.org
asatru jesus said:
f(x)= sin 3x - (1/2)sin x, find the period.

i know the period for sin 3x is 2pi/3 and the period of sin x is 2pi but how do you subtract these? I totally forget how to do this! I mean i could find the answer with any graphing program but i want to know how to do this type of problem.

Go with the greater value (period). Can you see why?
 
Why subtract them? The two functions will both repeat when you reach the least common multiple of their separate periods. Here, it should be obvious that 2\pi is a multiple of \frac{2\pi}{3}.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Back
Top