Understanding Roots of Unity: Proving Even Distribution with Math

john951007
Messages
9
Reaction score
1
I don't understand why roots of unity are evenly distributed? Every time when we calculate roots of unity, we get one result and then plus the difference in degree, but I think this follows the rule of even distribution and I don't understand that, it is easy to be trapped in a reasoning cycle.
how to prove it using mathematics?

Thank you
 
Mathematics news on Phys.org
john951007 said:
Every time when we calculate roots of unity, we get one result and then plus the difference in degree

Are you asking if you have a complex root with some argument \theta then why would you also have a corresponding root with argument -\theta?
If that is the case then what you're noticing are complex conjugates, and it's very important to remember that every real polynomial that has a complex root will also have a complex conjugate root.

But if you're actually looking for a reason why the roots of unity are all evenly spaced around the unit circle in the complex plane, then read up about De Moivre's theorem and notice that if

z^n=1

where
1=e^{2\pi k i} with k being any integer, or if you're working with the trigonometric form,
1=\cos({2\pi k})+i\sin({2\pi k})

and now just take the nth root of both sides. It then shouldn't be hard to notice how they're evenly spaced.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top