Understanding Schwarz Inequality and Its Role in Higher Dimensions

  • Thread starter Thread starter ahmed markhoos
  • Start date Start date
  • Tags Tags
    Inequality
ahmed markhoos
Messages
49
Reaction score
2
Hello,

I'm having a small problem with Schwarz inequality, |u⋅v|≤||u||||v||

the statement is true if and only if cosΘ≤1 !, I'm familiar with this result but how could it be more than 1?
what is so special in higher dimensions that it gave the ability for cosine to be more than 1? why and how?
 
Physics news on Phys.org
It can't be more than 1. The inequality ##|\langle u,v\rangle|\leq\|u\|\|v\|## holds for all vectors u and v. That's why it makes sense to define "the angle between u and v" as the ##\theta## such that
$$\cos\theta =\frac{\langle u,v\rangle}{\|u\|\|v\|}.$$ This isn't some new version of the cosine function. It's the plain old cosine function that you're familiar with.
 
Last edited:
  • Like
Likes manoj@kumar and ahmed markhoos
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top