Understanding Second Order Homogeneous Differential Equations

  • Thread starter Thread starter Firepanda
  • Start date Start date
Firepanda
Messages
425
Reaction score
0
http://img231.imageshack.us/img231/5213/njtd7.jpg

What order differential equation is this?

In my notes i have the 2nd order differntial equation (homogeneous equation) as

y'' + py' + qy = 0

I take possible soultions in the form y = e^mx

=> (m^2 + pm + q)e^mx = 0

Then I take solutions of the equation using the quadratic forumula of m^2 + pm + q = 0?

General soultion is then y = c(1)y(1) + c(2)y(2)

Am I getting this right?

Thanks!

here do p and q both equal to 1?
 
Last edited by a moderator:
Physics news on Phys.org
\frac{d^2\theta}{dt^2}+\frac{d\theta}{dt}+sin\theta=0

\frac{d^2\theta}{dt^2}+\frac{d\theta}{dt}=-sin\theta

All solutions are of the form \theta=e^{rt}

So the auxiliary equation is r^2+r=0 \Rightarrow r(r+1)=

so the roots are r=0,-1

So the Complimentary function would be \theta=c_1+c_2e^{-t}
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top