nhrock3
- 403
- 0
<br />
_{c}\oint F*dr=_{\sigma}\iint(curlF)nds<br />
F(x,y,z)=(2z)i+(3x)j+(5y)k
<br /> _{\sigma}<br /> is a part of a paraboloid z=4-x^2-y^2 where z>=0
on the x-y plane our paraboloid is 4=x^2+y^2
and the parametric view of it is:
x=2cost y=2sint z=0
so we get
<br /> _{c}\oint F*dr= (2z)dx+(3x)dy+(5y)dz<br />
i can't understand the next step<br /> <br /> _{c}\oint F*dr= (2z)dx+(3x)dy+(5y)dz=\intop_{0}^{2\pi}[0+(6cost)(2cost)+0]dt<br />
why??
F(x,y,z)=(2z)i+(3x)j+(5y)k
<br /> _{\sigma}<br /> is a part of a paraboloid z=4-x^2-y^2 where z>=0
on the x-y plane our paraboloid is 4=x^2+y^2
and the parametric view of it is:
x=2cost y=2sint z=0
so we get
<br /> _{c}\oint F*dr= (2z)dx+(3x)dy+(5y)dz<br />
i can't understand the next step<br /> <br /> _{c}\oint F*dr= (2z)dx+(3x)dy+(5y)dz=\intop_{0}^{2\pi}[0+(6cost)(2cost)+0]dt<br />
why??