avr5iron
- 1
- 0
Can someone explain why the solution for x in x^2 = 4 is x = 2, -2
while the solution for x in x = 4 ^ (1/2) is 2
while the solution for x in x = 4 ^ (1/2) is 2
The discussion revolves around the differences in solutions for quadratic equations versus radical equations, specifically examining the equations x² = 4 and x = 4^(1/2). Participants explore the reasoning behind the distinct solutions and the implications of square roots in these contexts.
Participants generally agree on the distinction between the solutions of quadratic and radical equations, but there is ongoing debate regarding the interpretation of square roots and the implications of negative solutions. The discussion remains unresolved in terms of fully clarifying these concepts.
Some participants express uncertainty about the assumptions underlying square root operations, particularly regarding the treatment of negative values and the implications of the principal square root. There is also a lack of consensus on how to best communicate these ideas to students.
avr5iron said:Can someone explain why the solution for x in x^2 = 4 is x = 2, -2
while the solution for x in x = 4 ^ (1/2) is 2
The first is a quadratic equation; it has two roots.$\text{Can someone explain why the solution is }\pm2\,\text{ for }\,x^2 \:=\: 4$
. . $\text{while the solution is }2\,\text{ for }\,x \:=\: 4^{\frac{1}{2}}$