Understanding Square Residue: Solving the Mystery of -1 = x^2 mod p

  • Thread starter Thread starter MathematicalPhysicist
  • Start date Start date
  • Tags Tags
    Residue Square
MathematicalPhysicist
Science Advisor
Gold Member
Messages
4,662
Reaction score
372
I forgot why the next statement is true and it's bugging me endlessly...

If p is prime such that p =1 mod 4 then (-1) = x^2 mod p.

Now in Ashe's Algebriac Number theory notes (book?), he says that
((\frac{p-1}{2})!)^2= -1 mod p

I am quite stumped as how to show this, he argues we just need to look at:
1*2*...((p-1)/2)*(-1)*(-2)...*(-(p-1)/2)

which on the one hand because p =1 mod 4 it equals ((\frac{p-1}{2})!)^2
on the other hand it also equals (p-1)!, but why does this equal -1?

Thanks.
 
Physics news on Phys.org
x2modp is not -1 for all x. Examples of exceptions include p=13, x=4; p=13 x=2; p=101, x=5...
 
cubzar, what he meant was that there is a solution to x^2 = -1 mod p.

It's because (p-1)! = -1 mod p for all prime p. I believe this is called wilsons theorem. The reasons why this is true is that 1,2,3,...,p-1 are all residue classes mod p, so for each number in the product, its inverse is also a factor for all numbers which are not their own inverse. These are 1 and -1 = p-1, so we can ignore them and pair up the others. Thus 2*3*...*(p-2) = 1, and so (p-1)! = -1.
 
Ok, thanks, now I do get it.
in 2*3*...*(p-2) we have a number and its inverse multiplied together, this is why it equals 1.

I don't understand how I didn't notice this triviality, I guess the age does it trick... :-(
 
MathematicalPhysicist said:
Ok, thanks, now I do get it.
in 2*3*...*(p-2) we have a number and its inverse multiplied together, this is why it equals 1.

I don't understand how I didn't notice this triviality, I guess the age does it trick... :-(

I don't think it is your fault, the author should have explained it instead of showing off. This is the problem with mathematicians, they write books as incomplete instruction manuals and expect the reader to fill in the gaps.
:smile:
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top