MHB Understanding the Constant Field of a Differential Field in $k((x))$

  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Constant Field
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

I am looking at the following part:

View attachment 5078 The constant field of the differential field $k((x))$ is $k((x^p))$.
Hence if $(1)_p$ has a solution in $k((x))$, multiplication by a suitable constant yields a solution in $k[[x]]$. What exactly is a constant field of a field? (Wondering)
 

Attachments

  • id.PNG
    id.PNG
    37.7 KB · Views: 101
Physics news on Phys.org
Here, they almost surely mean the "functions" in $k((x))$ which are zero under differentiation. In characteristic zero, this would just be $k$, but in characteristic $p$, the monomial $x^p$ differentiates as
\[\frac{d}{dx}x^p = px^{p-1} = 0x = 0.\]
One consequence of this observation is that for any $f(x) \in k((x))$, then
\[\frac{d}{dx}x^pf = px^{p-1}f + x^p \frac{d}{dx}f = x^p\frac{df}{dx}\]
which means that if $f$ is a solution to a linear differential equation, then $x^pf$ will also be a solution to the same equation.
 
The world of 2\times 2 complex matrices is very colorful. They form a Banach-algebra, they act on spinors, they contain the quaternions, SU(2), su(2), SL(2,\mathbb C), sl(2,\mathbb C). Furthermore, with the determinant as Euclidean or pseudo-Euclidean norm, isu(2) is a 3-dimensional Euclidean space, \mathbb RI\oplus isu(2) is a Minkowski space with signature (1,3), i\mathbb RI\oplus su(2) is a Minkowski space with signature (3,1), SU(2) is the double cover of SO(3), sl(2,\mathbb C) is the...

Similar threads