MHB Understanding the Intriguing $\pi/2$ Integral Result

  • Thread starter Thread starter Dustinsfl
  • Start date Start date
  • Tags Tags
    Integral
Click For Summary
The integral results $\int_0^{\infty}\frac{\sin x}{x}dx = \frac{\pi}{2}$ and $\int_0^{\infty}\frac{\sin^2 x}{x^2}dx = \frac{\pi}{2}$ are both derived using integration techniques, including integration by parts. The calculation for $\int_0^{\infty}\frac{\sin^2 x}{x^2}dx$ involves transforming the integral and applying limits, ultimately relating it back to the known result of $\int_0^{\infty}\frac{\sin(2x)}{x}dx$. The surprising aspect is that despite the different integrands, both integrals yield the same value of $\frac{\pi}{2}$. This phenomenon raises questions about the underlying reasons for such equivalence, which remains unexplained in the discussion. The exploration of these integrals highlights interesting connections in mathematical analysis.
Dustinsfl
Messages
2,217
Reaction score
5
So on the recent graduate problem of the week, I saw that $\int_0^{\infty}\frac{\sin x}{x}dx = \frac{\pi}{2}$, but so does, $\int_0^{\infty}\frac{\sin^2 x}{x^2}dx = \frac{\pi}{2}$.
How can they both be the same?
 
Physics news on Phys.org
dwsmith said:
So on the recent graduate problem of the week, I saw that $\int_0^{\infty}\frac{\sin x}{x}dx = \frac{\pi}{2}$, but so does, $\int_0^{\infty}\frac{\sin^2 x}{x^2}dx = \frac{\pi}{2}$.
How can they both be the same?

Let us use integration by parts to compute $\displaystyle\int_0^{\infty}\frac{\sin^2 x}{x^2}\,dx$. At the end, we will need to use the fact that $\displaystyle\int_0^{\infty}\frac{\sin x}{x}\,dx=\frac{\pi}{2}$

Let $u=\sin^2x$ and $\,dv=\dfrac{\,dx}{x^2}$. Then $\,du=2\sin x\cos x\,dx=\sin(2x)\,dx$ and $v=-\dfrac{1}{x}$. Therefore,
\[\int_0^{\infty}\frac{\sin^2 x}{x^2}\,dx = \left[-\frac{\sin^2 x}{x}\right]_0^{\infty}+\int_0^{\infty}\frac{\sin(2x)}{x}\,dx=\int_0^{\infty}\frac{\sin(2x)}{x}\,dx.\]
(We note that $|\sin x|\leq 1\implies |\sin^2 x|\leq 1$ and thus $\displaystyle\lim_{x\to\infty} \frac{\sin^2 x}{x}\sim \lim_{x\to\infty} \frac{1}{x}=0$; We also note that $\displaystyle\lim_{x\to 0}\frac{\sin^2 x}{x}=\lim_{x\to 0}\frac{\sin x}{x}\cdot\lim_{x\to 0}\sin x=0$. Hence, that's why the $\displaystyle\left[-\frac{\sin^2 x}{x}\right]_0^{\infty}$ term goes to zero.)

Now let $t=2x\implies\,dt=2\,dx$. Therefore,
\[\int_0^{\infty}\frac{\sin(2x)}{x}\,dx\xrightarrow{t=2x}{} \int_0^{\infty}\frac{\sin t}{t/2}\frac{\,dt}{2}=\int_0^{\infty}\frac{\sin t}{t}=\frac{\pi}{2}.\]
And thus, we also have that $\displaystyle\int_0^{\infty}\frac{\sin^2 x}{x^2}\,dx =\frac{\pi}{2}$.

I hope this makes sense!
 
$$F(a)=\int^{\infty}_0\frac{\sin^2(ax)}{x^2}$$

Differentiate w.r.t a :

$$F'(a)=\int^{\infty}_0 \frac{\sin(2ax)}{x}$$

Let 2ax=t

$$F'(a)=\int^{\infty}_0 \frac{\sin(t)}{t}=\frac{\pi}{2}$$

$$F(a)=\frac{\pi}{2}a+C$$

Putting a =0 we get C = 0 hence

$$\int^{\infty}_0\frac{\sin^2(ax)}{x^2}=\frac{\pi \cdot a}{2}$$

So for a =1 we get our result :

$$\int^{\infty}_0\frac{\sin^2(x)}{x^2}=\frac{\pi}{2}$$
 
If your question is why such thing happen , then I don't know , to me it is pretty strange !

If you see the graph of both functions , then you have no indications ...
 
I just thought it was strange. When I took Theory of Complex Variables, I had the $\int_0^{\infty}\frac{\sin^2x}{x^2}dx = \frac{\pi}{2}$ exercise so I was surprised to see that $\frac{\sin x}{x}$ lead to the same conclusion.
 
In complex analysis $$\int^{\infty}_0 \dfrac{1-\cos(x)}{x^2}$$ and $$\int^{\infty}_0 \frac{\sin(x)}{x}$$ are conventional exercises to solve by contour integration ...
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 29 ·
Replies
29
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
632
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K