Understanding the Lagrangian of a Free Particle?

evoluciona2
Messages
7
Reaction score
0
Hello,

I'm trying to follow an argument in Landau's Mechanics. The argument concerns finding the Lagrangian of a free particle moving with velocity v relative to an inertial frame K. (of course L=1/2 mv^2, which is what we have to find). I'll state the points of the argument:

(0) It has already been argued that the Lagrangian relative to an intertial frame K must be of the form L(v^2) (space is homogeneous and iostropic).

(1) If an inertial frame K is moving with infinitesimal velocity e relative to another inertial frame K', the Lagrangian L' must be of the same form because the equations of motion are unchanged under Galilean transformations.

(2) So the Lagrangian L' wrt K' must differ by L by at most a time derivative of some f(q,t).

(3) L' = L(v'^2) = L(v^2 + 2v*e + e^2) which is to first-order L(v'^2) = L(v^2) + (\partial L/\partial v^2) 2 v\cdot e

(4) The second term in the last equation is a total time derivative only if it is a linear function of the velocity v. Hence \partial L/\partial v^2 is independent of the velocity. I.e. the Lagrangian is proportional to the square of the velocity.

I'm having trouble with (2) and (4).

Specifically, my question for (2) is that it has been proven L and L' differing by a time derivative of some f(q,t) (q is a vector of generalized coordinates) does not change the solutions of the equations of motion, but the other way around. Thus 'must differ' in (2) isn't true. I guess 'allowed to differ' is more correct.

My question for (4) is that I don't get it. :)

Thanks
-evoluciona
 
Physics news on Phys.org
Hi.
I am not good at English, so I cannot distinguish the meanings of "must differ by at most" and "allowed to differ".

If <br /> (\partial L/\partial v^2) <br />

= a0 + a1v + a2v^2 + ...

<br /> (\partial L/\partial v^2) 2 v\cdot e<br />

= 2a0ve + 2a1v^2e + 2a2v^3 e+ ...

= 2a0 dr/dt e + 2a1 (dr/dt)^2 e + 2a2 (dr/dt)^3 e + ...

Only the first term is the time derivative of the function, say f=2a0re.
Regards.
 
sweet springs said:
= 2a0 dr/dt e + 2a1 (dr/dt)^2 e + 2a2 (dr/dt)^3 e + ...

Only the first term is the time derivative of the function, say f=2a0re.
Regards.

I see. df(x,t)/dt = df/dx v + df/dt is a linear function in v so the higher order terms are eliminated.

Thank you!

-evoluciona
 
Toponium is a hadron which is the bound state of a valance top quark and a valance antitop quark. Oversimplified presentations often state that top quarks don't form hadrons, because they decay to bottom quarks extremely rapidly after they are created, leaving no time to form a hadron. And, the vast majority of the time, this is true. But, the lifetime of a top quark is only an average lifetime. Sometimes it decays faster and sometimes it decays slower. In the highly improbable case that...
I'm following this paper by Kitaev on SL(2,R) representations and I'm having a problem in the normalization of the continuous eigenfunctions (eqs. (67)-(70)), which satisfy \langle f_s | f_{s'} \rangle = \int_{0}^{1} \frac{2}{(1-u)^2} f_s(u)^* f_{s'}(u) \, du. \tag{67} The singular contribution of the integral arises at the endpoint u=1 of the integral, and in the limit u \to 1, the function f_s(u) takes on the form f_s(u) \approx a_s (1-u)^{1/2 + i s} + a_s^* (1-u)^{1/2 - i s}. \tag{70}...
Back
Top