courtrigrad
- 1,236
- 2
If S_n = 1 + \frac {1}{1!} + \frac {1}{2!} + ... + \frac {1}{n!} [B}(1) [/B] and as n increases the sequence tends to a limit.
For all values of n S_n \leq 1 + 1 + \frac {1}{2} + \frac {1}{2^2} + ... + \frac {1}{2^{n-1}} = 1 + \frac {1 - \frac {1}{2^n}}{1 - \frac {1}{2}} < 3. (2)
So \lim_{x\rightarrow \infty} S_n = e (3)
What I do not understand is how they reached the conclusion in (2) ?
Any insight or ideas are appreciated
Thanks
For all values of n S_n \leq 1 + 1 + \frac {1}{2} + \frac {1}{2^2} + ... + \frac {1}{2^{n-1}} = 1 + \frac {1 - \frac {1}{2^n}}{1 - \frac {1}{2}} < 3. (2)
So \lim_{x\rightarrow \infty} S_n = e (3)
What I do not understand is how they reached the conclusion in (2) ?
Any insight or ideas are appreciated
Thanks

Last edited: