Understanding the Meaning of f_Y(y) in Density Functions

  • Thread starter Thread starter nhrock3
  • Start date Start date
nhrock3
Messages
403
Reaction score
0
f_Y(y)

f means density function what are Y and y
?
 
Physics news on Phys.org
It's probably the partial derivative of f with respect to Y at y.
 
Or, in some cases, the capital Y can represent the restriction of the domain of f to Y.
 
with respect to probability(its not what you said)
 
f_Y is the given density function of random variable Y and f_Y(y) is its value for some specific value y.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top