I Understanding the Parity Operator in Dirac Field Theory

  • I
  • Thread starter Thread starter Silviu
  • Start date Start date
  • Tags Tags
    Dirac Operator
Silviu
Messages
612
Reaction score
11
Hello! I am a bit confused about matrices dimensions in the second quantization of the Dirac field. The book I am using is "An Introduction to Quantum Field Theory" by Peskin and Schroder and I will focus in this question mainly on the Parity operator which is section 3.6. The field operator (one of them) is written as: ##\psi(x) = \int{\frac{d^3p}{(2\pi)^3} \frac{1}{\sqrt{2E_p}}\sum_s(a_p^su^s(p)e^{-ipx}+b_p^{s\dagger}\bar{u}^s(p)e^{ipx})}##. ##b_p^{s\dagger}## acting on vacuum creates an antifermion with momentum p, while ##a_p^s## destroys a fermion state. ##u^s(p)## is a column vector. Now, they are trying to find a ##4\times4## matrix of the parity operator ##P##. They say ##Pa_p^sP=\eta_\alpha a_{-p}^s## where ##\eta## is a possible phase. Based on this, I conclude that ##a_p^s## is a ##4x4## matrix, so that the matrix multiplication makes sense (same for b's). Then they calculate ##P\psi(x)P## and get it equal to ##P\psi(x)P = \int{\frac{d^3p}{(2\pi)^3} \frac{1}{\sqrt{2E_p}}\sum_s(\eta_\alpha a_{-p}^su^s(p)e^{-ipx}+\eta_b^* b_{-p}^{s\dagger}\bar{u}^s(p)e^{ipx})}##. This implies that ##\psi(x)## is also a ##4\times4## matrix but here I get confused. Inside the integral, we have terms of the form ##a_{p}^su^s(p)## based on what I said above this should lead to a ##(4\times4)\times(4\times1)=4\times1## column vector, so the whole integral would be a column vector, but it is equal to ##\psi(x)## which is a ##4\times4## matrix, which doesn't make sense to me. Also, when they multiply ##P## on both sides, you would have inside the integral terms of the form ##Pa_{p}^su^s(p)P## which wouldn't make sense because of the column vector ##u^s(p)##, but somehow they just move P to the left of it and solve the problem. So I don't really understand how they do this. I am obviously missing something. Can someone explain this to me please? Thank you!
 
Physics news on Phys.org
Silviu said:
Hello! I am a bit confused about matrices dimensions in the second quantization of the Dirac field. The book I am using is "An Introduction to Quantum Field Theory" by Peskin and Schroder and I will focus in this question mainly on the Parity operator which is section 3.6. The field operator (one of them) is written as: ##\psi(x) = \int{\frac{d^3p}{(2\pi)^3} \frac{1}{\sqrt{2E_p}}\sum_s(a_p^su^s(p)e^{-ipx}+b_p^{s\dagger}\bar{u}^s(p)e^{ipx})}##. ##b_p^{s\dagger}## acting on vacuum creates an antifermion with momentum p, while ##a_p^s## destroys a fermion state. ##u^s(p)## is a column vector. Now, they are trying to find a ##4\times4## matrix of the parity operator ##P##. They say ##Pa_p^sP=\eta_\alpha a_{-p}^s## where ##\eta## is a possible phase. Based on this, I conclude that ##a_p^s## is a ##4x4## matrix, so that the matrix multiplication makes sense (same for b's). Then they calculate ##P\psi(x)P## and get it equal to ##P\psi(x)P = \int{\frac{d^3p}{(2\pi)^3} \frac{1}{\sqrt{2E_p}}\sum_s(\eta_\alpha a_{-p}^su^s(p)e^{-ipx}+\eta_b^* b_{-p}^{s\dagger}\bar{u}^s(p)e^{ipx})}##. This implies that ##\psi(x)## is also a ##4\times4## matrix but here I get confused. Inside the integral, we have terms of the form ##a_{p}^su^s(p)## based on what I said above this should lead to a ##(4\times4)\times(4\times1)=4\times1## column vector, so the whole integral would be a column vector, but it is equal to ##\psi(x)## which is a ##4\times4## matrix, which doesn't make sense to me. Also, when they multiply ##P## on both sides, you would have inside the integral terms of the form ##Pa_{p}^su^s(p)P## which wouldn't make sense because of the column vector ##u^s(p)##, but somehow they just move P to the left of it and solve the problem. So I don't really understand how they do this. I am obviously missing something. Can someone explain this to me please? Thank you!

No. The as and bs are not matrices. They are just abstract operators that raise and lower the number of particles.
 
  • Like
Likes nomadreid
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
Back
Top