Understanding the Power Function for Poisson Distribution

  • Thread starter Thread starter Artusartos
  • Start date Start date
  • Tags Tags
    Statistics
Artusartos
Messages
236
Reaction score
0
In this link:

http://www.math.harvard.edu/~phorn/362/362assn3-solns.pdf

I do not understand how they got the power function for number 5...can anybody explain it to me please?

Thanks in advance
 
Last edited by a moderator:
Physics news on Phys.org
You understand that Y ~ Poisson(12θ)? Given that, what are the probabilities for Y being 0, 1, 2?
 
haruspex said:
You understand that Y ~ Poisson(12θ)? Given that, what are the probabilities for Y being 0, 1, 2?

Oh, ok thanks.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top