JesseM said:
Yes, I think it's different from your statement "You have to discuss the Rindler metric apart from any other metric e.g. Minkowski". Schutz would presumably say that the Rindler metric and the Minkowski metric are the "same metric" since either one can be obtained by a coordinate transformation on the other.
You seem to not even pay a little attention towards me. These two spacetimes are NOT the same everywhere. The Rindler line-element can be used as a line-element for a flat spacetime but we have circumferences under which Rindler does not reduce to Minkowski and this arises from
1- the existence of a horizon in Rindler metric at x=0,
2- the so-called "uniform" motion of different observers relative to each other.
The second statement says that the Rindler metric is in essence the Minkowski spacetime in "expanding coordinates" but one cannot account for it being the same as the Minkowski spacetime at any arbitrary point. Besides this, since the dynamical behavior, or the way geoemetry (gravitational field) allows particles to move, in the two metrics are different, you should be careful when applying an inverse transformation to get Minkowski from Rindler because, for instance, the points (t,0,y,z) are not contained in the Rindler metric and for this reason I can say Rindler spacetime is a compactification of the Minkowski spacetime assuming x to be chosen from \textbf{R}-{0}. Thus such coordinate system is not equivalent to Minkowski everywhere. Agreed?
I agree as well, since the FRW metric is not a stationary one. But he is also saying that for any metric whose components are time-independent in one coordinate system, you can always transform into another coordinate system where the components are time-dependent, yet it is still the "same metric" in both cases--do you agree?
...is the same metric if no event horizon or a point appears where the metric acts irregularly.
It seems like you're using "same family" to discuss something different than the ordinary notion of spacetime geometry, though. Consider differential geometry of ordinary 2-dimensional spatial surfaces, like a sphere and a plane. On a given surface, you can place different coordinate systems
Haven't you ever herad they use the words "bad" and "good" to call coordinate systems? A bad coordinate system is one whose determinant vanishes at some point and the good one has a non-vanishing determinant everywhere. As for a bad coordinate system, I can name the spherical coordinates for which r=0 and \theta = \pi generate singularity. For the Schwartschild metric, yet such singularities are present along with another coordinate singularity on the hyperplane 2m=r. Due to this reason, we can't introduce an orthogonal metric basis that make the metric flat everywhere but only at points with properties mentioned above.
and then the equations of the metric describing the curvature of the surface will be different.
If a flat spacetime is described by another coordinate system, yet the curvature tensor must vanish. This is correct and I don't seem to lay my finger on it, but rather on the statement that in all these coordinates the metric remains ALWAYS the same and I think I gave a vivid example above.
Still, geometrically a sphere is a sphere and a plane is a plane--you can define the difference between the two in intrinsic terms by talking about things like geodesic length-minimizing paths and the sum of the angles of a triangle formed by three geodesics crossing at three points. So, there is an equivalence class of metric equations which all describe a spherical geometry and thus would all count as the "same metric" in Schutz's terms, just expressed in different coordinate systems on a sphere...likewise there is an equivalence class of metric equations which all describe a planar Euclidean geometry.
Yet this does not make the Rindler spacetime be the same as Minkowski everywhere! Why don't you want to agree that the Rindler spacetime does not cover the whole of the Minkowski spacetime and it of course has a horizon and different dynamics? If you exclude this last thing, I would sort of agree with you! But This is physics and we have to take into account everything related to it!
Do you agree that this notion of an equivalence class of metrics which which describe the same underlying geometry is meaningful in GR as well, and that this is presumably what Schutz meant when he talked about the "same metric" for a stationary gravity field having either time-dependent or time-independent components depending on what coordinate system it was written down in?
Ah, are you interested in asking long question?! Yes, I agree that he is just talking about "equivalence class" of metrics via introducing coordinate systems that do transform the metric into other possible forms. But as I talked about earlier, in GR the curved Riemannian spacetimes have crucial bahaviour when it comes to the transformation! Almost every curved spacetime is only able to be transformed into Minkowski spacetime through an appropriate metric transformation (not coordinate transformation) which is only locally applied as in the case of Schwarzschild metric with Jaccobi coefficients
e_0^0=\frac{1}{c\sqrt{1-2m/r}},
(e_1^1)^2=-(1-2m/r),
(e_2^2)^2=-\frac{1}{r},
(e_3^3)^2=-\frac{1}{r\sin(\theta)}.
Such metric transformation occurs just locally at some given point P.
And if so, do you agree that in this geometrical sense the Rindler metric is the same metric as the Minkowski metric?
I agree due to reason I'm giving below!
Finally, if you are using "same family" to describe a different equivalence class than the geometrical one I'm talking about, is this one that you've come up with yourself or one that you've seen discussed in textbooks or papers? What utility would this alternate equivalence class have?
The most known classification of spacetimes is the Petrov classification and of course other much general classifications (for instance, some classify the spacetimes into categories with different signatures -Lorentzian, Pseudo Riemannian and etc.- by which the metric itself is mostly targeted) exist in the advanced textbooks and articles (just google them!). In the Petrov classification, both Rindler and Minkowski spacetimes have vanishing Riemann tensor so they are of type O thus in the same class! But such classification does not zoom into the dynamics of spacetime as they just look at the Weyl tensor and if it was zero (if the Ricci tensor vanishes so does the Weyl tensor), then the spacetime is of type O. And I think I told you that such classification is accepted at least in my own view.
By "same spacetime" I was referring to this notion of the same spacetime geometry expressed in different coordinate systems (along with the same physical events in both coordinate systems of course). Hopefully you agree this is a meaningful notion?
Yes, of course
What statement is vacuously true? The original "not logical" statement of yours was "We can make any spacetime inertial locally and of course it is not logical to apply a transformation that is going to map all points in the flat spacetime into the Minkowski metric because we can do this to every flat spacetime globally."
This actually refers to the fact that every coordinate transformation has its own "range of working" as in the Schwarzschild metric, you can't apply any coordinate transformation at essential singularities. Transforming coordinates blindly throughout the spacetime is not logical because we may be doing this at a point where the initial metric has a singularity there as in the above case!
However, I just found out that the singularity of Rindler metric is not essential and can be removed by defining the coordinates (u,v)
u=t-\ln(x),
v=t+\ln(x).
Now we get the differential of each coordinate:
du=dt-dx/x,
dv=dt+dx/x.
Multiplying these two equations by each other and rearranging terms give
x^2dt^2-dx^2=x^2dudv=e^{v-u}dudv,
where - \infty<u,v< \infty and we used the fact that x=e^{v-t} and x=e^{t-u}.
Finally introducing U=e^{-u} and V=e^v yields
ds^2=dUdV,
for the Rindler metric with 0<U,V< \infty. But as we can see, there is no longer any singularity at U=0 or V=0. This suggests that we may now extend the spacetime by allowing V and U to be unrestricted and by applying a transformation of the form X=(V-U)/2, T=(V+U)/2 in this last line-element we get the Minkowski metric which is basically
the extended spacetime not the Rindler metric itself! You got it?
What result from a mathematical standpoint is correct? And how am I "applying the EP"?
If you're applying a transformation over the entire manifold to make it flat, this is may be correct from a mathematical viewpoint, but since the dynamics of spacetime may also change, it is not true from a physical point of view because it resembles the situation where we apply EP throughout the spacetime! There is a long discussion in this
https://www.physicsforums.com/showthread.php?t=377254" that is about answering a fundamental question: Do in a Rindler metric particles traveling along timelike geodesics experience a constant acceleration? The answer as given by bcrowell is yes only if we take instantaneously at rest particles with a comoving instantaneous observer with an ideal clock whose hands are not affected by gravitational field. Such assumption is made after battling with hardships that one needs to go through if he seeks out this property in the Rindler metric, not in the Minkowski metric where you arrive at through a simple coordinate transformation!
I'm just saying that the Rindler metric equation and the Minkowski metric equation describe the same spacetime geometry (and would be the 'same metric' in different coordinate systems according to the way most physicists like Schutz seem to talk about things), and as such if you use either metric to make predictions about local coordinate-independent physical facts like what readings two clocks show when they pass next to one another, you'll get identical predictions.
I think it is now clear that the Minkowski spacetime is the extended Rindler metric! Agreed?
On the other hand if you used a metric equation that did not fall into the same equivalence class of describing a flat spacetime geometry, like the Schwarzschild metric, then there would be no possible coordinate transformation such that you'd get all the same physical predictions about coordinate-independent local facts if you used the Schwarzschild metric in Schwarzschild coordinates vs. the Minkowski metric in Minkowski coordinates.
Are you speaking locally? Or globally? You should specify this first! Any spacetime, as EP says, can be made flat approximately in a small region and can be made flat exactly at some given point! All the flat metrics are of type O, and fall into the same family but unfortunately there are other metrics within this class that are not flat, but
conformally flat.
Thus, this notion of an equivalence class of metric equations describing the "same geometry" is a very useful one physically, since it distinguishes between cases where using different metric equations makes no difference at all in terms of any of your coordinate-independent physical predictions, and cases where it does make a difference.
It is sort of useful. But it does not tell everything about the metrics and thus it can't hold a candle to the Petrov classification.
Depends how you define the EP I suppose, but certainly it would be possible to construct a "very large" system of rulers and clocks which are free-falling in the pseudo-gravitational field in Rindler spacetime, such that if you use this system to define a new coordinate system, then the equations of laws of physics as defined this coordinate system will be exactly the same as those seen in an SR inertial frame (in fact this free-falling frame is just an SR inertial frame as viewed in Rindler coordinates). Again, please tell me if you disagree with this.
I disagree! In the Rindler metric the situation is the same as any other metric in which the EP is defined only within its common ranges, a small region where we can approximately make the spacetime flat and dreaming of a "very large" region as for the EP to hold in is just impossible because the geodesic equations are position-dependent!
AB