BrainHurts
- 100
- 0
Homework Statement
Define
f_n : \mathbb{R} \rightarrow \mathbb{R} by
f_n(x) = \left( x^2 + \dfrac{1}{n} \right)^{\frac{1}{2}}
Show that f_n(x) \rightarrow |x| converges uniformly on compact subsets of \mathbb{R}
Show that the convergence is uniform in all of \mathbb{R}
The Attempt at a Solution
Not quite good at these epsilon proofs, not sure if it needs to go that far but by the root law we have that
\lim_{ n\rightarrow \infty} \sqrt{x^2 + \dfrac{1}{n}} = \sqrt{x^2 + \lim_{n \rightarrow \infty} \dfrac{1}{n}} = \sqrt{x^2} = |x|. Now this shows that f_n converges uniformly in some subset of \mathbb{R} correct?