kof9595995
- 676
- 2
I'm having difficulty understanding this concept of uniqueness. What's the precise definition of it? Let say we have some direct sum decomposition,
(1)Are \left( {\begin{array}{*{20}{c}}<br /> {{R_1}} & 0 \\<br /> 0 & {{R_2}} \\<br /> \end{array}} \right) and \left( {\begin{array}{*{20}{c}}<br /> {{R_2}} & 0 \\ <br /> 0 & {{R_1}} \\<br /> \end{array}} \right)the same decomposition?
(2)Are \left( {\begin{array}{*{20}{c}}<br /> {{R_1}} & 0 \\<br /> 0 & {{R_2}} \\<br /> \end{array}} \right) and\left( {\begin{array}{*{20}{c}}<br /> {{R_1}} & 0 \\<br /> 0 & {{U^{ - 1}}{R_2}U} \\<br /> \end{array}} \right)the same decomposition?
(1)Are \left( {\begin{array}{*{20}{c}}<br /> {{R_1}} & 0 \\<br /> 0 & {{R_2}} \\<br /> \end{array}} \right) and \left( {\begin{array}{*{20}{c}}<br /> {{R_2}} & 0 \\ <br /> 0 & {{R_1}} \\<br /> \end{array}} \right)the same decomposition?
(2)Are \left( {\begin{array}{*{20}{c}}<br /> {{R_1}} & 0 \\<br /> 0 & {{R_2}} \\<br /> \end{array}} \right) and\left( {\begin{array}{*{20}{c}}<br /> {{R_1}} & 0 \\<br /> 0 & {{U^{ - 1}}{R_2}U} \\<br /> \end{array}} \right)the same decomposition?