fluidistic
Gold Member
- 3,928
- 272
Homework Statement
Demonstrate that if u_1 and u_2 are solutions of the wave equation \frac{\partial ^2 u}{\partial t^2} - \triangle u=0 such that u_1 (0,x)=u_2(0,x), \partial _t u_1 (0,x)=\partial _t u_2(0,x) and such that the difference "tends to 0 at infinity" sufficiently quickly, then u_1=u_2.
Hint: First prove that the following energy is conserved: E(t)=\int _{\mathbb{R}^3} \frac{1}{2} \left [ (\partial _t u)^2 +\nabla u \cdot \nabla u \right ] dV.
2. The attempt at a solution
Nothing concrete.
I don't understand the part "the difference tends to 0 at infinity". What difference?
Anyway, even assuming that the energy is conserved, I've absolutely no idea about what to do. I'm stuck on the this first exercise since a week. I don't ask for an answer, but rather any push/help.
I don't even know how to start proving that this energy is conserved.