Unitarity and locality on patgh integrals

melthengylf
Messages
9
Reaction score
2
my question is this: you know than in feynman path integra, you integrate eiS/hbar along all the fields. you also know that S is real and that it is the integral of local functions (fields and derivatives of fields). you also know that path integral generates an unitary and local theory. the question is, it generates a local theory because the action is an integral of local functions? it generates unitary theory because the exponent involved is purely imaginary? if not, are these facts anyhow related?? thank you very much. I'm sorry for the untidiness.
 
Physics news on Phys.org
Last edited:
that's both excellent answers! I'm reading about it now. I'm really grateful.
 
Last edited:
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Is it possible, and fruitful, to use certain conceptual and technical tools from effective field theory (coarse-graining/integrating-out, power-counting, matching, RG) to think about the relationship between the fundamental (quantum) and the emergent (classical), both to account for the quasi-autonomy of the classical level and to quantify residual quantum corrections? By “emergent,” I mean the following: after integrating out fast/irrelevant quantum degrees of freedom (high-energy modes...
Back
Top