Unraveling the Skolem Paradox: A Look into the Countability of Real Arithmetic

  • Thread starter Thread starter MathematicalPhysicist
  • Start date Start date
  • Tags Tags
    Paradox
MathematicalPhysicist
Science Advisor
Gold Member
Messages
4,662
Reaction score
372
mathworld defines the paradox like this:"Even though real arithmetic is uncountable, it possesses a countable "model.""
now here a few a questions:
1. why can't you count in real arithmetic, surely you can count numbers (-: ?
2. what is this "model"?
3. why the "model" is countable but the arithmetic isnt?
 
Physics news on Phys.org
I have to guess at the meaning of some of the terms but...


Recall that "countable" when applied to a set means that the set can be placed into a 1-1 correspondence with the natural numbers. For example, with the rational numbers, we can write the enumeration

1 - 1/1
2 - 2/1
3 - 1/2
4 - 3/1
5 - 1/3 (we already have 2/2)
6 - 4/1
7 - 3/2
8 - 2/3
9 - 1/4
10 - 5/1
11 - 1/5
...

Every rational number will appear in this sequence, so the rational numbers are countable.

However, the real numbers are uncountable; it is impossible to make such an enumeration (via one of Cantor's diagonal arguments).


I presume by saying "real arithmetic is uncountable" it means that there are uncountably many real numbers.

As for the countable model... I presume that they mean when the axioms are weakened to be written in first-order logic. I don't know what one does to the axiom of completeness, but I know there's an important type of field called a real closed field (aka "formally real field"), and I presume that the axioms of a real closed field are what replaces the axiom of completeness. A countable model of a real closed field is the algebraic numbers (the field of all real roots of integer polynomials).
 
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Back
Top