Upper Bound for Optimal Value in Max Problem

pinki82
Messages
6
Reaction score
0
Obtain an upper bound for the optimal value in the following problem;
Max (4x_1 + x_2 + 2x_3 + 3x_4 )
2x_1 - x_2 + x_3 - 2x_4 <= 2
7x_1 + x_2 + 5x_3 + 10x_4 <= 4
2x_1 + 3x_2 - x_3 - x_4 <= 2
x_i >= 0 , i= 1,2,3,4

any hint.help. please.
thanks

note: >= means > or equal to
<= means < or equal to

WORK DONE :

I understnad how to find the optimal value...but how do i find the
upper bound?
i don't really understand what is meant by the Upper Bound??

thanks.
 
Physics news on Phys.org
Definition of upper bound:

Given an ordered set X and A \subset X , s \in X is its &quot;upper bound&quot; ( sup\{A\}) \leftrightharpoons \forall x \in A, x \preceq s et \forall y \prec s \exists a \in A : a \prec y
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top