How Does the Upper Envelope Function Relate to the Riemann-Stieltjes Integral?

  • Thread starter Thread starter mathmonkey
  • Start date Start date
  • Tags Tags
    Proof
mathmonkey
Messages
33
Reaction score
0

Homework Statement



Let ##f## be a bounded function on [a,b] and let ##h## be the upper envelope of ##f##. Then ##R \overline{\int}_a^b f = \int _a^b h. ## (if ##\phi \geq f ## is a step function, then ##\phi \geq h## except at a finite number of points, and so ##\int _a^b h \leq R \overline{\int}_a^b f##. But there is a sequence ##\phi _n## of step functions such that ##\phi _n \rightarrow h## so that ##\int _a^b h = lim \int _a^b \phi _n \geq R \overline{\int}_a^b f##).

Homework Equations



Given ##f##, the upper envelope ##h## is defined as

##h(y) = \inf _{\delta > 0} \sup_{|x-y|< \delta} f(x) ##

The Attempt at a Solution



My question with the problem is with this statement:

"if ##\phi \geq f ## is a step function, then ##\phi \geq h## except at a finite number of points, and so ##\int _a^b h \leq R \overline{\int}_a^b f##."

I may be misunderstanding the definition of upper envelope, but suppose ##f## is defined as:

##f(x) = 0## for ##x \in \mathbb{R} - \mathbb{Q}## and ##f(x) = 1## for ##x \in \mathbb{Q}##. Then the upper envelope should be ##h(x) = 1## everywhere? Since every open set around each point in [a,b] will contain a rational number. On the other hand, ##f## itself is a step function, so if we set ##\phi = f##, we have a step function such that ##\phi \geq f##, but there are uncountably many points where ##h \geq \phi## which is in contradiction with the statement in the problem. Am I misunderstanding anything here?

Thanks for any help, it is greatly appreciated!
 
Last edited:
Physics news on Phys.org
A step function is defined piecewise on finitely many intervals - the indicator function of the rationals is NOT a step function
 
Aha! Thank you! My boneheaded self kept reading "step function" but thinking "simple function" :redface:
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top