1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Urgend Calculus Question: Please Look

  1. Sep 24, 2006 #1

    Given [tex]z = sin(x + sin(t))[/tex]

    show that [tex]\frac{\partial z}{\partial x} \cdot \frac{\partial ^2 x}{\partial x \partial z} = \frac{\partial z}{\partial t} \cdot \frac{\partial ^2 z} {\partial x^2}[/tex]

    By using the chain-rule I get:

    [tex]f_x(x,t) = cos(x + sin(1))[/tex]

    [tex]f_{xx}(x,t) = -sin(x + sin(1))[/tex]

    [tex]f_t(x,t) = cos(1) \cdot cos(x + sin(1))[/tex]

    [tex]f_{tt}(x,t) = 0[/tex]


    [tex]\frac{\partial z}{\partial x} \cdot \frac{\partial ^2 x}{\partial x \partial z} = cos(x + sin(1)) \cdot 0 = cos(1) \cdot cos(x + sin(1)) \cdot 0 = \frac{\partial z}{\partial t} \cdot \frac{\partial ^2 z} {\partial x^2}[/tex]

    Does that look right ?

    Last edited: Sep 24, 2006
  2. jcsd
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Can you offer guidance or do you also need help?
Draft saved Draft deleted

Similar Threads - Urgend Calculus Question Date
Urgend Assistance needed: Abstract Algebra Sep 27, 2006
Urgend: Sum of digits question Sep 20, 2006
Urgend Geometric series question Feb 22, 2006
Urgend calculus question Feb 16, 2006
Probability Problem(Urgend) Dec 12, 2005