Is there a smallest point in the interval [0,1] where f attains the value of 0?

cxc001
Messages
15
Reaction score
0
Suppose f:[0,1]->R is continuous, f(0)>0, f(1)=0.
Prove that there is a X0 in (0,1] such that f(Xo)=0 & f(X) >0 for 0<=X<Xo (there is a smallest point in the interval [0,1] which f attains 0)

Since f is continuous, then there exist a sequence Xn converges to X0, and f(Xn) converges to f(Xo).
Since 0<=(Xo-1/n)<Xo
Can I just let Xn=Xo-1/n so that 0<=Xn<Xo
So when Xn->Xo, f(Xn)->f(Xo)

I wasn't convinced enough this is the right approach...
 
Physics news on Phys.org
No, this won't work, because you begin by assuming the existence of the number x_0, which existence you are required to prove.

I suggest two other approaches, either of which will work.

1. What does the set f^{-1}(\{0\}) look like, topologically?

2. What would happen if the set of points x such that f(x) = 0 had no smallest element in [0,1]?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top