1up20x6
- 6
- 0
Homework Statement
A = \begin{pmatrix}<br /> 1 & 4\\<br /> 2 & -1<br /> \end{pmatrix}
Find A^n and A^{-n} where n is a positive integer.
Homework Equations
The Attempt at a Solution
(xI - A) = \begin{pmatrix}<br /> x-1 & -4\\<br /> -2 & x+1<br /> \end{pmatrix}
det(xI - A) = (x-3)(x+3)<br />
λ_1 = 3\quad λ_2 = -3
\begin{pmatrix}<br /> 2 & -4\\<br /> -2 & 4\end{pmatrix}<br /> \begin{pmatrix}<br /> a\\<br /> b<br /> \end{pmatrix}<br /> = \begin{pmatrix}<br /> 0\\<br /> 0<br /> \end{pmatrix}\quad<br /> \begin{pmatrix}<br /> a\\<br /> b<br /> \end{pmatrix}<br /> = \begin{pmatrix}<br /> 2\\<br /> 1<br /> \end{pmatrix}
\begin{pmatrix}<br /> -4 & -4\\<br /> -2 & -2\end{pmatrix}<br /> \begin{pmatrix}<br /> c\\<br /> d<br /> \end{pmatrix}<br /> = \begin{pmatrix}<br /> 0\\<br /> 0<br /> \end{pmatrix}\quad<br /> \begin{pmatrix}<br /> c\\<br /> d<br /> \end{pmatrix}<br /> = \begin{pmatrix}<br /> -1\\<br /> 1<br /> \end{pmatrix}
P = \begin{pmatrix}<br /> λ_1 & λ_2<br /> \end{pmatrix}<br /> = \begin{pmatrix}<br /> 2 & -1\\<br /> 1 & 1<br /> \end{pmatrix}
P^{-1} = \begin{pmatrix}<br /> \frac{1}{3} & \frac{1}{3}\\<br /> \frac{-1}{3} & \frac{2}{3}<br /> \end{pmatrix}
D = \begin{pmatrix}<br /> λ_1 & 0\\<br /> 0 & λ_2<br /> \end{pmatrix}<br /> = \begin{pmatrix}<br /> 3 & 0\\<br /> 0 & -3<br /> \end{pmatrix}
PD^nP^{-1} = A^n<br /> = \begin{pmatrix}<br /> 2 & -1\\<br /> 1 & 1<br /> \end{pmatrix}<br /> \begin{pmatrix}<br /> 3^n & 0\\<br /> 0 & -3^n<br /> \end{pmatrix}<br /> \begin{pmatrix}<br /> \frac{1}{3} & \frac{1}{3}\\<br /> \frac{-1}{3} & \frac{2}{3}<br /> \end{pmatrix}
= \begin{pmatrix}<br /> 2(3^n) & -(-3)^n\\<br /> 3^n & (-3)^n<br /> \end{pmatrix}<br /> \begin{pmatrix}<br /> \frac{1}{3} & \frac{1}{3}\\<br /> \frac{-1}{3} & \frac{2}{3}<br /> \end{pmatrix}
= \begin{pmatrix}<br /> \frac{2}{3}(3^n) + \frac{1}{3}((-3)^n) & \frac{2}{3}(3^n) - \frac{2}{3}((-3)^n)\\<br /> \frac{1}{3}(3^n) - \frac{1}{3}((-3)^n) & \frac{1}{3}(3^n) + \frac{2}{3}((-3)^n)<br /> \end{pmatrix}
I think that everything I've done so far is correctly, but I can't find any way to simplify this equation any further, and I don't think that I could find A^{-n} with an equation this complicated, so I must be missing something.