Hi, sometimes when I'm trying to work out the Fourier Transform of a signal, I get different answers depending on whether I use Fourier Transform properites (such as rect(t) will go to sinc(f) etc) or whether I use the FT integral. Here's an example where I'm not sure which 1 is the correct answer:(adsbygoogle = window.adsbygoogle || []).push({});

The signal is: [tex]g(t)=-Arect(\frac{t+T}{T})+Arect(\frac{t}{T})-Arect(\frac{t-T}{T})[/tex]

Using FT properties:

[tex]

G(f)=-ATsinc(Tf)e^{j2\pi fT}+ATsinc(fT)-ATsinc(Tf)e^{-j2\pi fT}[/tex]

Therefore:

[tex]G(f)=-2ATsinc(Tf)cos(2\pi fT)+ATsinc(Tf)[/tex]

Using the FT Integral:

[tex]G(f)=-A\int_{\frac{-3T}{2}}^{\frac{-T}{2}}e^{-j2\pi ft}dt+A\int_{\frac{-T}{2}}^{\frac{T}{2}}e^{-j2\pi ft}dt-A\int_{\frac{T}{2}}^{\frac{3T}{2}}e^{-j2\pi ft}dt[/tex]

Therefore:

[tex]G(f)=-A[\frac{e^{j\pi fT}-e^{j\pi f3T}}{-j2\pi f}]+\frac{A}{\pi f}[\frac{e^{j\pi fT}-e^{-j\pi fT}}{2j}]-A[\frac{e^{-j\pi f3T}-e^{-j\pi fT}}{-j2\pi f}][/tex]

Therefore:

[tex]G(f)=2TAsinc(fT) -3TAsinc(3fT)[/tex]

**Physics Forums - The Fusion of Science and Community**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Using Fourier Properties or standard Integral?

Loading...

Similar Threads - Using Fourier Properties | Date |
---|---|

Using the Fourier transform to interpret oscilloscope data | Nov 30, 2016 |

Smearing an audio recording using Fourier transform | Oct 12, 2016 |

What method does a reciever or transmitter use to approx... | Jul 31, 2015 |

Complex Fourier Series using Matlab | Mar 23, 2014 |

Uses of eulers equation in fourier series | Sep 6, 2012 |

**Physics Forums - The Fusion of Science and Community**