Using isomorphisms to transform polynomials to vectors.

-Dragoon-
Messages
308
Reaction score
7
Does this actually work well? We won't learn isomorphisms in linear algebra, but a friend of mine showed me an example as I prefer to work with vectors and matrices rather than polynomials (All of my problem sets are with matrices and vectors).

For example, if I wanted to find a basis for P3 that contains the polynomial 8x^3 - 2x^2 + 5x + 11, could you use isomorphisms to transform it into a vector in R4 and then find a basis?
 
Physics news on Phys.org
Yes, sure. This can indeed be done.

Send

f(ax^3+bx^2+cx+d)=(a,b,c,d)

This can be shown to be an isomorphism. So the vector spaces P_3 and \mathbb{R}^4 are the same for all linear algebra purposes. So a basis with the polynomials can be found by searching a basis in \mathbb{R}^4 first.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top