fluidistic
Gold Member
- 3,928
- 272
Homework Statement
I'd like to solve a DE using Laplace transform.
\ddot y (t)+\omega ^2 y(t)=f(t) for all t>0.
Initial conditions: y(0)=\dot y (0)=0. The dot denotes the derivative with respect to t.
Homework Equations
\mathbb{L}( \dot y )=s\mathbb{L}( y )-y(0).
Convolution: if h=f*g then H(s)=G(s)F(s).
The Attempt at a Solution
I apply the LT on the DE: s^2 Y(s)-sy(0)-\dot y(0)+\omega ^2 Y(s)=F(s). Therefore Y(s)=\frac{F(s)}{s^2+\omega ^2 }. Now I can use the convolution property: y(t)=f(t)*\mathbb{L ^{-1}} \left ( \frac{1}{s^2+\omega ^2} \right ).
Unfortunately I do not find the inverse Laplace transform of \left ( \frac{1}{s^2+\omega ^2} \right ) in any table.
So it means I must perform the integral \frac{1}{2\pi i }\int _{\sigma -i \infty}^{\sigma + i \infty }e^{st}\frac{1}{s^2+\omega ^2 }ds. Any help for this is appreciated.
Edit: Let f(z)=\frac{e^{zt}}{z^2+\omega ^2}. I need to employ the residue theorem. The denominator can be rewritten into (z-i \omega )(z+i \omega). So the residue at z=i\omega is worth \lim _{z \to i \omega } \frac{e^{zt}}{z+i \omega }=\frac{e^{i \omega t }}{2i \omega}. While the residue at z=-i \omega is worth -\frac{e^{-i \omega t}}{2i \omega }.
Last edited: