Using parametric differentiation to evaluate the slope of a curve - attempted

chuffy
Messages
22
Reaction score
0

Homework Statement



x(t) = (t^2 -1) / (t^2 +1)

y(t) = (2t) / (t^2 +1)

at the point t=1

Homework Equations



Line equation = y-y1 = m(x-x1)

chan rule = (dy/dt) / (dx/dt) = dy/dx

The Attempt at a Solution



I find the y1 and x1 values by subing in t=1 to the x(t) and y(t) equations
I get the point (0,1) when t=1

I have used the Quotient rule to find dx/dt & dy/dx (Is this right?)
Doing the above I get:

dy/dt = (-2(t^2 -1)) / (t^2+1)^2

dx/dt = (4t) / (t^2 +1)^2

So dy/dx = (dy/dt) / (dx/dt) however when I sub in t=1 to (dy/dt) I get 0 as the numerator

I know that the m of the line equation is equal to dy/dx

does anyone know what I'm doing wrong? I'll try uploading a pic of my work
cheers
 
Physics news on Phys.org
pic of my working
 

Attachments

  • IMG_20130207_190038.jpg
    IMG_20130207_190038.jpg
    35.3 KB · Views: 400
What makes you think something is wrong? have you plotted the x v y graph for t having a range of values? say t=-1, 0, 1, 2, 3
 
if t=1 does this mean that m= 0?
 


The graph of this function is an ellipse. t= 1 is the point (0, 1) where the tangent line is, in fact, horizontal so the dy/dx= 0 there.
 

Attachments

  • ellipse.jpeg
    ellipse.jpeg
    8.2 KB · Views: 459


cheers
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top