Petar Mali
- 283
- 0
Vick's theorem help us to find average value of product of even number of operators. For example look the case of four Bose operators
\langle \hat{b}_1\hat{b}_2\hat{b}_3\hat{b}_4 \rangle =\langle \hat{b}_1\hat{b}_2 \rangle \langle\hat{b}_3\hat{b}_4 \rangle +\langle \hat{b}_1\hat{b}_3 \rangle \langle\hat{b}_2\hat{b}_4 \rangle +\langle \hat{b}_1\hat{b}_4 \rangle \langle\hat{b}_2\hat{b}_3 \rangle
In some cases when we have just product of four Bose operators we use decoupling
\hat{b}^+_i\hat{b}_i\hat{b}^+_j\hat{b}_j=\langle \hat{b}^+_i\hat{b}_i \rangle \hat{b}^+_j\hat{b}_j+\langle \hat{b}^+_j\hat{b}_j \rangle \hat{b}^+_i\hat{b}_i+\langle \hat{b}^+_i\hat{b}_j \rangle \hat{b}^+_j\hat{b}_i+\langle \hat{b}^+_j\hat{b}_i \rangle \hat{b}^+_i\hat{b}_j
Why not
\hat{b}^+_i\hat{b}_i\hat{b}^+_j\hat{b}_j=\langle \hat{b}^+_i\hat{b}_i \rangle \hat{b}^+_j\hat{b}_j+\langle \hat{b}^+_j\hat{b}_j \rangle \hat{b}^+_i\hat{b}_i+\langle \hat{b}^+_i\hat{b}^+_j \rangle \hat{b}^+_i\hat{b}_j+\langle \hat{b}^+_i\hat{b}_j \rangle \hat{b}^+_i\hat{b}^+_j +\langle \hat{b}^+_i\hat{b}_j \rangle \hat{b}^+_j\hat{b}_i+\langle \hat{b}^+_j\hat{b}_i \rangle \hat{b}^+_i\hat{b}_j?
similarly
\hat{b}^+_i\hat{b}^+_i\hat{b}_i\hat{b}_j=\langle \hat{b}^+_i\hat{b}_i \rangle \hat{b}^+_i\hat{b}_j+\langle \hat{b}^+_i\hat{b}_i \rangle \hat{b}^+_i\hat{b}_j+\langle \hat{b}^+_i\hat{b}_j \rangle \hat{b}^+_i\hat{b}_i+\langle \hat{b}^+_i\hat{b}_j \rangle \hat{b}^+_i\hat{b}_i
and no
\hat{b}^+_i\hat{b}^+_i\hat{b}_i\hat{b}_j=\langle \hat{b}^+_i\hat{b}_i \rangle \hat{b}^+_i\hat{b}_j+\langle \hat{b}^+_i\hat{b}_i \rangle \hat{b}^+_i\hat{b}_j+\langle \hat{b}^+_i\hat{b}_j \rangle \hat{b}^+_i\hat{b}_i+\langle \hat{b}^+_i\hat{b}_j \rangle \hat{b}^+_i\hat{b}_i+\langle \hat{b}^+_i\hat{b}^+_i \rangle \hat{b}_i\hat{b}_j+\langle \hat{b}_i\hat{b}_j \rangle \hat{b}^+_i\hat{b}^+_i
Thanks for your answer!
\langle \hat{b}_1\hat{b}_2\hat{b}_3\hat{b}_4 \rangle =\langle \hat{b}_1\hat{b}_2 \rangle \langle\hat{b}_3\hat{b}_4 \rangle +\langle \hat{b}_1\hat{b}_3 \rangle \langle\hat{b}_2\hat{b}_4 \rangle +\langle \hat{b}_1\hat{b}_4 \rangle \langle\hat{b}_2\hat{b}_3 \rangle
In some cases when we have just product of four Bose operators we use decoupling
\hat{b}^+_i\hat{b}_i\hat{b}^+_j\hat{b}_j=\langle \hat{b}^+_i\hat{b}_i \rangle \hat{b}^+_j\hat{b}_j+\langle \hat{b}^+_j\hat{b}_j \rangle \hat{b}^+_i\hat{b}_i+\langle \hat{b}^+_i\hat{b}_j \rangle \hat{b}^+_j\hat{b}_i+\langle \hat{b}^+_j\hat{b}_i \rangle \hat{b}^+_i\hat{b}_j
Why not
\hat{b}^+_i\hat{b}_i\hat{b}^+_j\hat{b}_j=\langle \hat{b}^+_i\hat{b}_i \rangle \hat{b}^+_j\hat{b}_j+\langle \hat{b}^+_j\hat{b}_j \rangle \hat{b}^+_i\hat{b}_i+\langle \hat{b}^+_i\hat{b}^+_j \rangle \hat{b}^+_i\hat{b}_j+\langle \hat{b}^+_i\hat{b}_j \rangle \hat{b}^+_i\hat{b}^+_j +\langle \hat{b}^+_i\hat{b}_j \rangle \hat{b}^+_j\hat{b}_i+\langle \hat{b}^+_j\hat{b}_i \rangle \hat{b}^+_i\hat{b}_j?
similarly
\hat{b}^+_i\hat{b}^+_i\hat{b}_i\hat{b}_j=\langle \hat{b}^+_i\hat{b}_i \rangle \hat{b}^+_i\hat{b}_j+\langle \hat{b}^+_i\hat{b}_i \rangle \hat{b}^+_i\hat{b}_j+\langle \hat{b}^+_i\hat{b}_j \rangle \hat{b}^+_i\hat{b}_i+\langle \hat{b}^+_i\hat{b}_j \rangle \hat{b}^+_i\hat{b}_i
and no
\hat{b}^+_i\hat{b}^+_i\hat{b}_i\hat{b}_j=\langle \hat{b}^+_i\hat{b}_i \rangle \hat{b}^+_i\hat{b}_j+\langle \hat{b}^+_i\hat{b}_i \rangle \hat{b}^+_i\hat{b}_j+\langle \hat{b}^+_i\hat{b}_j \rangle \hat{b}^+_i\hat{b}_i+\langle \hat{b}^+_i\hat{b}_j \rangle \hat{b}^+_i\hat{b}_i+\langle \hat{b}^+_i\hat{b}^+_i \rangle \hat{b}_i\hat{b}_j+\langle \hat{b}_i\hat{b}_j \rangle \hat{b}^+_i\hat{b}^+_i
Thanks for your answer!