Vacuum energy in the Wess-Zumino model

nrqed
Science Advisor
Messages
3,762
Reaction score
297
:cry:I am at my wit's end so I hope someone can help.

I am trying to do what is (almost) the simplest SUSY calculation one can think of: the calculation of the vacuum energy in the Wess-Zumino model. The result shoudl be zero but I don't get that.

Since SUSY is "beyond the standard model" physics, I decided to cross-post my question here.

Let me start by asking a simpler question and see if anyone can help.

Let me break up the Wess-Zumino interactions into four terms

L_1 = - \frac{1}{2} g^2 (A^2 + B^2)^2

L_2 = - M g (A^3 + A B^2)

L_3 = - g A \overline{\Psi} \Psi

L_4 = - ig B \overline{\Psi} \gamma_5 \Psi

where A and B are scalar fields and Psi is a Majorana spinor, although for the terms I want to check in this post, this makes no difference, they can be treated as Dirac spinors.

I consider the contributions to the vacuum energy of order g^2 so I calculate the time
ordered expectation values of

i L_1 - \frac{1}{2} ( L_2^2 + L_3^2 + L_4^2 + 2 L_2 L_3 + 2 L_2 L_4 + 2 L_3 L_4 )


There are two main classes of diagrams: diagrams in which three lines connect two distinct points.
(i.e. "sunset" diagrams). These are a bit more tricky.

Simpler diagrams are those that contain two loops over independent variables (so the
diagrams contain two independent loops). These should be simple to double check.
I will only give my results for these diagrams, not the sunset diagrams for now. These diagrams should
cancel independently of the sunset diagrams (a fact confirmed by a paper of Zumino).
But I can't get it to work!

These diagrams either have the form of two circles touching each other or two circles connected by
line (forming a dumbell).

These diagrams are all proportional to the integral

I \equiv i g^2 \int D(z-z) D(w-w)

where D is just the usual boson propagator. I will quote all my results in terms of I .


CONTRIBUTION FROM L1

Diagram with two A loops: -3I/2

Diagram with one A loop and one B loop: -I

Diagram with two A loops: -3I/2

CONTRIBUTION FROM L2^2

Dumbell diagram with two A loops: 9 I/2

Dumbell diagram with one A loop and one B loop: 3 I

Dumbell diagram with two B loops: I/2

CONTRIBUTION FROM L3^2

Dumbell diagram, with two fermion loops: 8 I

CONTRIBUTION FROM L4^2

Because there is a gamma 5, there are no dumbell type contribution

CONTRIBUTION FROM L2 L3

Contribution with one A loop and one fermion loop: - 12 I

Contribution with one B loop and one fermion loop: -4 I

CONTRIBUTION FROM L3 L4 is identically zero.


SUM = -4 I

Now, can anyone check any of this??
 
Physics news on Phys.org
Thread 'LQG Legend Writes Paper Claiming GR Explains Dark Matter Phenomena'
A new group of investigators are attempting something similar to Deur's work, which seeks to explain dark matter phenomena with general relativity corrections to Newtonian gravity is systems like galaxies. Deur's most similar publication to this one along these lines was: One thing that makes this new paper notable is that the corresponding author is Giorgio Immirzi, the person after whom the somewhat mysterious Immirzi parameter of Loop Quantum Gravity is named. I will be reviewing the...
I seem to notice a buildup of papers like this: Detecting single gravitons with quantum sensing. (OK, old one.) Toward graviton detection via photon-graviton quantum state conversion Is this akin to “we’re soon gonna put string theory to the test”, or are these legit? Mind, I’m not expecting anyone to read the papers and explain them to me, but if one of you educated people already have an opinion I’d like to hear it. If not please ignore me. EDIT: I strongly suspect it’s bunk but...
Back
Top