I Vanishing Hamiltonian for quantum path integral

spaghetti3451
Messages
1,311
Reaction score
31
The path integral in quantum mechanics involves a factor ##e^{iS_{N}/\hbar}##, where

##S_{N}\equiv \sum\limits_{n=1}^{N+1}[p_{n}(x_{n}-x_{n-1})-\epsilon H(p_{n},x_{n},t_{n})].##

In the limit ##N \rightarrow \infty##, ##S_{N}## becomes the usual action ##S## for a given path.When the Hamiltonian vanishes, the potential energy of the system offsets the kinetic energy of the system and in the limit ##N \rightarrow \infty## the propagator ##\langle x_{b}, t_{b}|x_{a}, t_{a}\rangle## becomes

##S_{N} \equiv \sum\limits_{n=1}^{N+1}\epsilon\bigg[p_{n}\bigg(\frac{x_{n}-x_{n-1}}{\epsilon}\bigg)\bigg]=\int\ dt\ p\dot{x}##

I would like to think of a physical argument to justify this answer. Thoughts?
 
Physics news on Phys.org
Well, for an intuitive physical argument you could consider the classical formulation. Leaving aside various caveats, L = 2T - H (T = kinetic energy; 2T is what Leibniz called "vis viva"). When H = 0 then L = 2T which (integrated through time) is precisely your final answer, representing "action". I.e., (ignoring factor of 2) the integral of energy through time, or integral of momentum through distance.

So the answer makes perfect sense classically. I don't know if that's what you're looking for? Perhaps you already knew that and want a physical argument for the principle of least action? There are a few of those.
 
What you have there seems to be the abbreviated action ##S_{0} \equiv \int \mathbf{p} \cdot d\mathbf{q}##, which is linked to Maupertuis' principle of least action - i.e. "shortest" path.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!

Similar threads

Back
Top