Vanishing Ricci Tensor in 3 Dimensions

Airsteve0
Messages
80
Reaction score
0
In my general relativity course my professor recommended that it would be useful to convince ourselves that in 3 dimensions the vacuum field equations are trivial because the vanishing of the Ricci tensor implies the vanishing of the full Riemann tensor. However, I am unsure of how to show this mathematically; if someone could help me or point me in the right direction I would appreciate it, thanks.
 
Physics news on Phys.org
Airsteve0 said:
In my general relativity course my professor recommended that it would be useful to convince ourselves that in 3 dimensions the vacuum field equations are trivial because the vanishing of the Ricci tensor implies the vanishing of the full Riemann tensor. However, I am unsure of how to show this mathematically; if someone could help me or point me in the right direction I would appreciate it, thanks.

Look at
www.physicsforums.com/showthread.php?t=128275
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. The Relativator was sold by (as printed) Atomic Laboratories, Inc. 3086 Claremont Ave, Berkeley 5, California , which seems to be a division of Cenco Instruments (Central Scientific Company)... Source: https://www.physicsforums.com/insights/relativator-circular-slide-rule-simulated-with-desmos/ by @robphy
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...

Similar threads

Back
Top