A Variation of Metric Tensor Under Coord Transf | 65 chars

QipshaqUli
Messages
2
Reaction score
0
TL;DR Summary
Under the coordinate transformation $\bar x=x+\varepsilon$, the variation of the metric $g^{\mu\nu}$ is:
$$
\delta g^{\mu\nu}(x)=\bar g^{\mu\nu}(x)-g^{\mu\nu}(x)=-\frac{\partial{ g^{\mu\nu}}}{\partial x^{\alpha}}\varepsilon^{\alpha}+ g^{\mu\beta}\frac{\partial \varepsilon^{\nu}}{\partial x^{\beta}}+g^{\alpha\nu}\frac{\partial \varepsilon^{\mu}}{\partial x^{\alpha}}
$$
the right hand side is equal to $$- {g^{\mu\nu}}_{,\alpha}\varepsilon^{\alpha}+ {\varepsilon^{\mu,\nu}}+{\varepsilon^{\nu,\mu}}
Under the coordinate transformation $\bar x=x+\varepsilon$, the variation of the metric $g^{\mu\nu}$ is:
$$
\delta g^{\mu\nu}(x)=\bar g^{\mu\nu}(x)-g^{\mu\nu}(x)=-\frac{\partial{ g^{\mu\nu}}}{\partial x^{\alpha}}\varepsilon^{\alpha}+ g^{\mu\beta}\frac{\partial \varepsilon^{\nu}}{\partial x^{\beta}}+g^{\alpha\nu}\frac{\partial \varepsilon^{\mu}}{\partial x^{\alpha}}
$$
the right hand side is equal to $$- {g^{\mu\nu}}_{,\alpha}\varepsilon^{\alpha}+ {\varepsilon^{\mu,\nu}}+{\varepsilon^{\nu,\mu}}=\varepsilon^{\mu;\nu}+\varepsilon^{\nu;\mu}$$
I have problem with the proof of the last equality.
$$
\varepsilon^{\mu;\nu}+\varepsilon^{\nu;\mu}=g^{\alpha\nu}{\varepsilon^{\mu}}_{;\alpha}+g^{\alpha\mu}{\varepsilon^{\nu}}_{;\alpha}=
$$

$$
g^{\alpha\nu}({\varepsilon^{\mu}}_{,\alpha}+\Gamma_{\beta\alpha}^{\mu}\varepsilon^{\beta})+g^{\alpha\mu}({\varepsilon^{\nu}}_{,\alpha}+\Gamma_{\beta\alpha}^{\nu}\varepsilon^{\beta})=
$$

$$
\varepsilon^{\mu,\nu}+g^{\alpha\nu}\frac{1}{2}g^{\mu\gamma}(g_{\gamma\beta,\alpha}+g_{\gamma\alpha,\beta}-g_{\beta\alpha,\gamma})\varepsilon^{\beta}+
\varepsilon^{\nu,\mu}+g^{\alpha\mu}\frac{1}{2}g^{\nu\gamma}(g_{\gamma\beta,\alpha}+g_{\gamma\alpha,\beta}-g_{\beta\alpha,\gamma})\varepsilon^{\beta}=
$$
Considering the summation over the repeated indeces each of the three items in both brackets gives the same quantity coupling with the respective indeces as: A(B+C-D)E, ABE=ACE=ADE, then A(B+C-D)E=ACE. I chose ACE
$$
\varepsilon^{\mu,\nu}+\varepsilon^{\nu,\mu}+g^{\alpha\mu}g^{\nu\gamma}g_{\gamma\alpha,\beta}\varepsilon^{\beta}={g^{\mu\nu}}_{,\beta}\varepsilon^{\beta}+{\varepsilon^{\mu}}^{,\nu}+{\varepsilon^{\nu}}^{,\mu}
$$
I have the first term with plus sign, opposite to the original one. What I did wrong?
 
Physics news on Phys.org
You do not need to use the expression for the Christoffel symbols. All that is needed is the metric compatibility of the connection
$$
\nabla_\mu g^{\nu\rho} = \partial_\mu g^{\nu\rho} + \Gamma^\nu_{\mu\sigma} g^{\sigma\rho} + \Gamma^\rho_{\mu\sigma} g^{\nu\sigma} = 0.
$$
 
  • Like
Likes QipshaqUli
I asked a question here, probably over 15 years ago on entanglement and I appreciated the thoughtful answers I received back then. The intervening years haven't made me any more knowledgeable in physics, so forgive my naïveté ! If a have a piece of paper in an area of high gravity, lets say near a black hole, and I draw a triangle on this paper and 'measure' the angles of the triangle, will they add to 180 degrees? How about if I'm looking at this paper outside of the (reasonable)...
From $$0 = \delta(g^{\alpha\mu}g_{\mu\nu}) = g^{\alpha\mu} \delta g_{\mu\nu} + g_{\mu\nu} \delta g^{\alpha\mu}$$ we have $$g^{\alpha\mu} \delta g_{\mu\nu} = -g_{\mu\nu} \delta g^{\alpha\mu} \,\, . $$ Multiply both sides by ##g_{\alpha\beta}## to get $$\delta g_{\beta\nu} = -g_{\alpha\beta} g_{\mu\nu} \delta g^{\alpha\mu} \qquad(*)$$ (This is Dirac's eq. (26.9) in "GTR".) On the other hand, the variation ##\delta g^{\alpha\mu} = \bar{g}^{\alpha\mu} - g^{\alpha\mu}## should be a tensor...
Back
Top